Helger Lipmaa 2014年eprint 论文《Almost Optimal Short Adaptive Non-Interactive Zero Knowledge》:
trapdoor commitment scheme主要针对的是CRS场景,如上图中的 x x x为trapdoor key,该key值应对Prover和Verifier均不可知(传说中的有毒垃圾?),否则,如对向量 0 ⃗ \vec{0} 0的knowledge commitment ( c , c ^ ) , c = g t , c ^ = g ^ t (c,\hat{c}),c=g^t,\hat{c}=\hat{g}^t (c,c^),c=gt,c^=g^t,若Prover若知道x值,可将 c c copen为任意的消息 a 1 , ⋯ , a n ; r = t − ∑ i = 1 n a i x i a_1,\cdots,a_n;r=t-\sum_{i=1}^{n}a_ix^i a1,⋯,an;r=t−∑i=1naixi,使得Verifier验证 c = g r ∏ i = 1 n g i a i c=g^r\prod_{i=1}^{n}g_i^{a_i} c=gr∏i=1ngiai、 c ^ = g ^ r ∏ i = 1 n g i ^ a i \hat{c}=\hat{g}^r\prod_{i=1}^{n}\hat{g_i}^{a_i} c^=g^r∏i=1ngi^ai以及 e ( g , c ^ ) = e ( g ^ , c ) e(g,\hat{c})=e(\hat{g},c) e(g,c^)=e(g^,c)均成立,从而破坏了commitment的binding属性要求。
其实就是将2.1节中的 x x x替换为多项式 P i ( σ ) P_i(\sigma ) Pi(σ)来构建CRS。Groth 2010年论文《Short Pairing-based Non-interactive Zero-Knowledge Arguments》中的CRS特例化为: P 0 ( X ) = Z ( X ) = 1 , P i ( X ) = X i P_0(X)=Z(X)=1,P_i(X)=X^i P0(X)=Z(X)=1,Pi(X)=Xi。
相应的trapdoor key为 ( σ , α ) (\sigma,\alpha) (σ,α),其security依赖于 q − q- q−type假设:
Interpolating Commitment Scheme的核心思想为:将要commit的向量 a ⃗ = ( a 1 , ⋯ , a n ) \vec{a}=(a_1,\cdots,a_n) a=(a1,⋯,an)以 n − 1 n-1 n−1阶多项式系数表示 L a ( X ) = a 1 + a 2 X + ⋯ + a n X n − 1 L_a(X)=a_1+a_2X+\cdots+a_nX^{n-1} La(X)=a1+a2X+⋯+anXn−1,该多项式再用 w i w_i wi【其中 Z ( X ) = X n − 1 , Z ( w i ) = 0 , w i = w i − 1 Z(X)=X^n-1,Z(w_i)=0,w_i=w^{i-1} Z(X)=Xn−1,Z(wi)=0,wi=wi−1,其中 w w w为n-th of root】进行Lagrange插值,对应的 n − 1 n-1 n−1阶Lagrange basis polynomial为: l i ( X ) = ∏ j ≠ i X − w j w i − w j , 相 应 地 有 : l i ( w i ) = 1 a n d l i ( w j ) = 0 f o r j ≠ i l_i(X)=\prod_{j\neq i}^{}\frac{X-w_j}{w_i-w_j},相应地有:l_i(w_i)=1\ and\ l_i(w_j)=0\ for\ j\neq i li(X)=∏j=iwi−wjX−wj,相应地有:li(wi)=1 and li(wj)=0 for j=i。
对应地: L a ( X ) = ∑ i = 1 n a i l i ( X ) L_a(X)=\sum_{i=1}^{n}a_il_i(X) La(X)=∑i=1naili(X) is the interpolating (Lagrange) polynomial of a ⃗ \vec{a} a at points w i w_i wi, L a ( w i ) = a i L_a(w_i)=a_i La(wi)=ai。
单位矩阵 I n = ( 1 0 ⋯ 0 0 1 ⋯ 0 ⋱ ⋱ ⋱ 0 0 0 ⋯ 1 ) = ( e ⃗ 1 e ⃗ 2 ⋯ e ⃗ n ) I_n=\begin{pmatrix} 1 & 0 & \cdots & 0\\ 0 & 1 & \cdots & 0\\ \ddots & \ddots & \ddots & 0\\ 0 & 0 & \cdots & 1 \end{pmatrix}=\begin{pmatrix} \vec{e}_1 \\ \vec{e}_2 \\ \cdots \\ \vec{e}_n \end{pmatrix} In=⎝⎜⎜⎛10⋱001⋱0⋯⋯⋱⋯0001⎠⎟⎟⎞=⎝⎜⎜⎛e1e2⋯en⎠⎟⎟⎞
全1向量为 1 ⃗ n = ( 1 , ⋯ , 1 ) \vec{1}_n=(1,\cdots,1) 1n=(1,⋯,1)
需证明:
a ⃗ ∘ b ⃗ = ( a 1 b 1 , ⋯ , a n b n ) = c ⃗ = ( c 1 , ⋯ , c n ) \vec{a}\circ \vec{b}=(a_1b_1,\cdots,a_nb_n)=\vec{c}=(c_1,\cdots,c_n) a∘b=(a1b1,⋯,anbn)=c=(c1,⋯,cn)
当且仅当:
( a ⃗ T I n ) ∘ ( b ⃗ T I n ) = ( c ⃗ T I n ) ∘ ( 1 ⃗ n T I n ) (\vec{a}^TI_n)\circ(\vec{b}^TI_n)=(\vec{c}^TI_n)\circ(\vec{1}_n^TI_n) (aTIn)∘(bTIn)=(cTIn)∘(1nTIn)
⇒ \Rightarrow ⇒
( ∑ a i e ⃗ i ) ∘ ( ∑ b i e ⃗ i ) = ( ∑ c i e ⃗ i ) ∘ ( ∑ e ⃗ i ) (\sum a_i\vec{e}_i)\circ(\sum b_i\vec{e}_i)=(\sum c_i\vec{e}_i)\circ(\sum \vec{e}_i) (∑aiei)∘(∑biei)=(∑ciei)∘(∑ei)
上述公式可理解为:有一个arithmetic circuit C C C,具有 n n n个parallel multiplication gates, that on given inputs a ⃗ \vec{a} a and b ⃗ \vec{b} b returns c ⃗ \vec{c} c as the output。
构建多项式: Q a ⃗ , b ⃗ , c ⃗ ( X ) = L a ( X ) L b ( X ) − L c ( X ) L 1 n ( X ) Q^{\vec{a},\vec{b},\vec{c}}(X)=L_a(X)L_b(X)-L_c(X)L_{1_n}(X) Qa,b,c(X)=La(X)Lb(X)−Lc(X)L1n(X)
借助2.2.2节的Interpolating Commitment Scheme概念,取 n n n个不同值 w 1 , ⋯ , w n w_1,\cdots,w_n w1,⋯,wn,满足 Z ( X ) = X n − 1 , Z ( w i ) = 0 Z(X)=X^n-1,Z(w_i)=0 Z(X)=Xn−1,Z(wi)=0。同时 L a ( X ) = ∑ i = 1 n a i l i ( X ) , L b ( X ) = ∑ i = 1 n b i l i ( X ) , L c ( X ) = ∑ i = 1 n c i l i ( X ) , L 1 n ( X ) = ∑ i = 1 n l i ( X ) L_a(X)=\sum_{i=1}^{n}a_il_i(X),L_b(X)=\sum_{i=1}^{n}b_il_i(X),L_c(X)=\sum_{i=1}^{n}c_il_i(X),L_{1_n}(X)=\sum_{i=1}^{n}l_i(X) La(X)=∑i=1naili(X),Lb(X)=∑i=1nbili(X),Lc(X)=∑i=1ncili(X),L1n(X)=∑i=1nli(X)【 n − 1 n-1 n−1阶Lagrange basis polynomial l i ( X ) = ∏ j ≠ i X − w j w i − w j , 相 应 地 有 : l i ( w i ) = 1 a n d l i ( w j ) = 0 f o r j ≠ i l_i(X)=\prod_{j\neq i}^{}\frac{X-w_j}{w_i-w_j},相应地有:l_i(w_i)=1\ and\ l_i(w_j)=0\ for\ j\neq i li(X)=∏j=iwi−wjX−wj,相应地有:li(wi)=1 and li(wj)=0 for j=i。】,从而有 Q a ⃗ , b ⃗ , c ⃗ ( X ) Q^{\vec{a},\vec{b},\vec{c}}(X) Qa,b,c(X)为 ( n − 1 ) + ( n − 1 ) = 2 n − 2 (n-1)+(n-1)=2n-2 (n−1)+(n−1)=2n−2阶。
若 a i b i = c i a_ib_i=c_i aibi=ci成立,则有:
Q a ⃗ , b ⃗ , c ⃗ ( w i ) = a i b i − c i = 0 Q^{\vec{a},\vec{b},\vec{c}}(w_i)=a_ib_i-c_i=0 Qa,b,c(wi)=aibi−ci=0,即 Q a ⃗ , b ⃗ , c ⃗ ( X ) Q^{\vec{a},\vec{b},\vec{c}}(X) Qa,b,c(X)在 n n n个不同的 ( w 1 , ⋯ , w n ) (w_1,\cdots,w_n) (w1,⋯,wn)均evaluate为0。
而 n n n阶多项式 Z ( X ) Z(X) Z(X)亦在 n n n个不同的 ( w 1 , ⋯ , w n ) (w_1,\cdots,w_n) (w1,⋯,wn)均evaluate为0。
因此:
存在 ( 2 n − 2 ) − n = n − 2 (2n-2)-n=n-2 (2n−2)−n=n−2 阶多项式 π ( X ) \pi(X) π(X),使得:
π ( X ) ⋅ Z ( X ) = Q a ⃗ , b ⃗ , c ⃗ ( X ) \pi(X)\cdot Z(X)=Q^{\vec{a},\vec{b},\vec{c}}(X) π(X)⋅Z(X)=Qa,b,c(X)成立。
Witness: a ⃗ , b ⃗ , c ⃗ \vec{a},\vec{b},\vec{c} a,b,c
1)即证明Prover知道相应的 a ⃗ , b ⃗ , c ⃗ \vec{a},\vec{b},\vec{c} a,b,c 满足 a ⃗ ∘ b ⃗ = c ⃗ \vec{a}\circ\vec{b}=\vec{c} a∘b=c
2)改为证明Prover知道相应的 n − 2 n-2 n−2 阶多项式 π ( X ) \pi(X) π(X),满足 π ( X ) ⋅ Z ( X ) = Q a ⃗ , b ⃗ , c ⃗ ( X ) \pi(X)\cdot Z(X)=Q^{\vec{a},\vec{b},\vec{c}}(X) π(X)⋅Z(X)=Qa,b,c(X)
3)为了保证zero knowledge,引入随机变量 r a , r b , r c ← r Z p r_a,r_b,r_c\leftarrow _r \mathbb{Z}_p ra,rb,rc←rZp,构建具有zero knowledge的多项式:
Q z k a ⃗ , b ⃗ , c ⃗ ( X ) = ( L a ( X ) + r a Z ( X ) ) ( L b ( X ) + r b Z ( X ) ) − ( L c ( X ) + r c Z ( X ) ) L 1 n ( X ) Q^{\vec{a},\vec{b},\vec{c}}_{zk}(X)=(L_a(X)+r_aZ(X))(L_b(X)+r_bZ(X))-(L_c(X)+r_cZ(X))L_{1_n}(X) Qzka,b,c(X)=(La(X)+raZ(X))(Lb(X)+rbZ(X))−(Lc(X)+rcZ(X))L1n(X)
证明Prover知道相应的 n − 2 n-2 n−2 阶多项式 π z k ( X ) \pi_{zk}(X) πzk(X),满足 π z k ( X ) ⋅ Z ( X ) = Q z k a ⃗ , b ⃗ , c ⃗ ( X ) \pi_{zk}(X)\cdot Z(X)=Q^{\vec{a},\vec{b},\vec{c}}_{zk}(X) πzk(X)⋅Z(X)=Qzka,b,c(X)。
n − 2 n-2 n−2 阶多项式 π z k ( X ) = Q z k a ⃗ , b ⃗ , c ⃗ ( X ) / Z ( X ) = ∑ i = 0 n − 2 π i X i \pi_{zk}(X)=Q^{\vec{a},\vec{b},\vec{c}}_{zk}(X)/Z(X)=\sum_{i=0}^{n-2}\pi_iX^i πzk(X)=Qzka,b,c(X)/Z(X)=∑i=0n−2πiXi 并不会reveal any information about the witness。
4)由于 π z k ( X ) \pi_{zk}(X) πzk(X) is not of sublinear length in n n n,Prover改为传输 the evaluation of π z k ( X ) \pi_{zk}(X) πzk(X) at a random secret point σ \sigma σ,同时借助2.2.2节的interpolating commitment scheme对应有:
c o m 1 ( c k 1 ; a ⃗ ; r a ) = g 1 r a Z ( σ ) + ∑ i = 1 n a i P i ( σ ) = g 1 r a Z ( σ ) + L a ( σ ) com_1(ck_1;\vec{a};r_a)=g_1^{r_aZ(\sigma)+\sum_{i=1}^{n}a_iP_i(\sigma)}=g_1^{r_aZ(\sigma)+L_a(\sigma)} com1(ck1;a;ra)=g1raZ(σ)+∑i=1naiPi(σ)=g1raZ(σ)+La(σ)
从而有:
e ( g 1 π z k ( σ ) , g 2 Z ( σ ) ) = e ( g 2 , g 1 Q z k a ⃗ , b ⃗ , c ⃗ ( σ ) ) = e ( c o m 1 ( c k 1 ; a ⃗ ; r a ) , c o m 1 ( c k 2 ; b ⃗ ; r b ) ) / e ( c o m 1 ( c k 1 ; c ⃗ ; r c ) , c o m 1 ( c k 2 ; 1 ⃗ ; 0 ) ) e(g_1^{\pi_{zk}(\sigma),g_2^{Z(\sigma)}})=e(g_2,g_1^{Q^{\vec{a},\vec{b},\vec{c}}_{zk}(\sigma)})=e(com_1(ck_1;\vec{a};r_a),com_1(ck_2;\vec{b};r_b))/e(com_1(ck_1;\vec{c};r_c),com_1(ck_2;\vec{1};0)) e(g1πzk(σ),g2Z(σ))=e(g2,g1Qzka,b,c(σ))=e(com1(ck1;a;ra),com1(ck2;b;rb))/e(com1(ck1;c;rc),com1(ck2;1;0)) 成立。
由于Prover 亦未知 random secret point σ \sigma σ,Prover需证明其知道 n − 2 n-2 n−2 阶多项式 π z k ( X ) \pi_{zk}(X) πzk(X) 的系数 π 0 , π 1 , ⋯ , π n − 2 \pi_0,\pi_1,\cdots,\pi_{n-2} π0,π1,⋯,πn−2。同时需在CRS中包含相应的 ( g 1 σ , g 1 σ 2 , ⋯ , g 1 σ n − 2 ) (g_1^{\sigma},g_1^{\sigma^2},\cdots,g_1^{\sigma^{n-2}}) (g1σ,g1σ2,⋯,g1σn−2)。同时,为了实现knowledge commitment of π 0 , π 1 , ⋯ , π n − 2 \pi_0,\pi_1,\cdots,\pi_{n-2} π0,π1,⋯,πn−2,引入secret key β \beta β,构建CRS ( g 1 β σ , g 1 β σ 2 , ⋯ , g 1 β σ n − 2 ) (g_1^{\beta\sigma},g_1^{\beta\sigma^2},\cdots,g_1^{\beta\sigma^{n-2}}) (g1βσ,g1βσ2,⋯,g1βσn−2)。
Prover计算: ( π , π β ) = ( g 1 , g 1 β ) ← ∏ i = 0 n − 2 ( g 1 σ i , g 1 β σ i ) π i (\pi,\pi^{\beta})=(g_1,g_1^{\beta})\leftarrow\prod_{i=0}^{n-2}(g_1^{\sigma^{i}},g_1^{\beta\sigma^{i}})^{\pi_i} (π,πβ)=(g1,g1β)←∏i=0n−2(g1σi,g1βσi)πi。其中 π \pi π即为 g 1 π z k ( σ ) = g 1 ∑ i = 0 n − 2 π i σ i = ∏ i = 0 n − 2 g 1 σ i g_1^{\pi_{zk}(\sigma)}=g_1^{\sum_{i=0}^{n-2}\pi_i\sigma^i}=\prod_{i=0}^{n-2}g_1^{\sigma^{i}} g1πzk(σ)=g1∑i=0n−2πiσi=∏i=0n−2g1σi。
详细的Hadamard Product Argument证明思路如下图所示: