Gson快速解析Json数组

这是我不得不记录下来的一个快速解析复杂的Json数组的框架,防止在以后的工作中忘记。(复杂划重点,简单的json数据我们用JsonObject就可以完全解析出来)

示例:

{
  "HeWeather6": [
    {
      "basic": {
        "cid": "CN101280601",
        "location": "shenzhen",
        "parent_city": "shenzhen",
        "admin_area": "guangdong",
        "cnty": "China",
        "lat": "22.54700089",
        "lon": "114.08594513",
        "tz": "+8.00"
      },
      "update": {
        "loc": "2018-04-11 09:47",
        "utc": "2018-04-11 01:47"
      },
      "status": "ok",
      "now": {
        "cloud": "75",
        "cond_code": "101",
        "cond_txt": "Cloudy",
        "fl": "27",
        "hum": "74",
        "pcpn": "0.0",
        "pres": "1014",
        "tmp": "25",
        "vis": "10",
        "wind_deg": "100",
        "wind_dir": "E",
        "wind_sc": "1",
        "wind_spd": "2"
      },
      "daily_forecast": [
        {
          "cond_code_d": "101",
          "cond_code_n": "101",
          "cond_txt_d": "Cloudy",
          "cond_txt_n": "Cloudy",
          "date": "2018-04-11",
          "hum": "77",
          "mr": "02:58",
          "ms": "14:26",
          "pcpn": "0.0",
          "pop": "0",
          "pres": "1013",
          "sr": "06:07",
          "ss": "18:42",
          "tmp_max": "29",
          "tmp_min": "22",
          "uv_index": "11",
          "vis": "20",
          "wind_deg": "0",
          "wind_dir": "no direction",
          "wind_sc": "1-2",
          "wind_spd": "1"
        },
        {
          "cond_code_d": "101",
          "cond_code_n": "101",
          "cond_txt_d": "Cloudy",
          "cond_txt_n": "Cloudy",
          "date": "2018-04-12",
          "hum": "85",
          "mr": "03:39",
          "ms": "15:19",
          "pcpn": "0.0",
          "pop": "0",
          "pres": "1011",
          "sr": "06:06",
          "ss": "18:43",
          "tmp_max": "29",
          "tmp_min": "23",
          "uv_index": "11",
          "vis": "16",
          "wind_deg": "0",
          "wind_dir": "no direction",
          "wind_sc": "1-2",
          "wind_spd": "3"
        },
        {
          "cond_code_d": "101",
          "cond_code_n": "101",
          "cond_txt_d": "Cloudy",
          "cond_txt_n": "Cloudy",
          "date": "2018-04-13",
          "hum": "82",
          "mr": "04:17",
          "ms": "16:12",
          "pcpn": "0.0",
          "pop": "0",
          "pres": "1012",
          "sr": "06:06",
          "ss": "18:43",
          "tmp_max": "29",
          "tmp_min": "23",
          "uv_index": "12",
          "vis": "16",
          "wind_deg": "0",
          "wind_dir": "no direction",
          "wind_sc": "1-2",
          "wind_spd": "9"
        }
      ],
      "hourly": [
        {
          "cloud": "38",
          "cond_code": "103",
          "cond_txt": "Partly Cloudy",
          "dew": "21",
          "hum": "68",
          "pop": "1",
          "pres": "1014",
          "time": "2018-04-11 10:00",
          "tmp": "25",
          "wind_deg": "147",
          "wind_dir": "SE",
          "wind_sc": "1-2",
          "wind_spd": "8"
        },
        {
          "cloud": "18",
          "cond_code": "103",
          "cond_txt": "Partly Cloudy",
          "dew": "18",
          "hum": "52",
          "pop": "0",
          "pres": "1012",
          "time": "2018-04-11 13:00",
          "tmp": "27",
          "wind_deg": "174",
          "wind_dir": "S",
          "wind_sc": "1-2",
          "wind_spd": "4"
        },
        {
          "cloud": "5",
          "cond_code": "103",
          "cond_txt": "Partly Cloudy",
          "dew": "18",
          "hum": "56",
          "pop": "0",
          "pres": "1010",
          "time": "2018-04-11 16:00",
          "tmp": "28",
          "wind_deg": "178",
          "wind_dir": "S",
          "wind_sc": "1-2",
          "wind_spd": "5"
        },
        {
          "cloud": "2",
          "cond_code": "103",
          "cond_txt": "Partly Cloudy",
          "dew": "21",
          "hum": "79",
          "pop": "0",
          "pres": "1011",
          "time": "2018-04-11 19:00",
          "tmp": "27",
          "wind_deg": "170",
          "wind_dir": "S",
          "wind_sc": "1-2",
          "wind_spd": "5"
        },
        {
          "cloud": "3",
          "cond_code": "103",
          "cond_txt": "Partly Cloudy",
          "dew": "21",
          "hum": "91",
          "pop": "0",
          "pres": "1012",
          "time": "2018-04-11 22:00",
          "tmp": "23",
          "wind_deg": "155",
          "wind_dir": "SE",
          "wind_sc": "1-2",
          "wind_spd": "10"
        },
        {
          "cloud": "62",
          "cond_code": "103",
          "cond_txt": "Partly Cloudy",
          "dew": "21",
          "hum": "91",
          "pop": "2",
          "pres": "1011",
          "time": "2018-04-12 01:00",
          "tmp": "22",
          "wind_deg": "140",
          "wind_dir": "SE",
          "wind_sc": "1-2",
          "wind_spd": "10"
        },
        {
          "cloud": "96",
          "cond_code": "103",
          "cond_txt": "Partly Cloudy",
          "dew": "22",
          "hum": "94",
          "pop": "2",
          "pres": "1010",
          "time": "2018-04-12 04:00",
          "tmp": "22",
          "wind_deg": "133",
          "wind_dir": "SE",
          "wind_sc": "1-2",
          "wind_spd": "3"
        },
        {
          "cloud": "99",
          "cond_code": "103",
          "cond_txt": "Partly Cloudy",
          "dew": "22",
          "hum": "91",
          "pop": "7",
          "pres": "1011",
          "time": "2018-04-12 07:00",
          "tmp": "22",
          "wind_deg": "140",
          "wind_dir": "SE",
          "wind_sc": "1-2",
          "wind_spd": "1"
        }
      ],
      "lifestyle": [
        {
          "brf": "较舒适",
          "txt": "白天天气晴好,您在这种天气条件下,会感觉早晚凉爽、舒适,午后偏热。",
          "type": "comf"
        },
        {
          "brf": "舒适",
          "txt": "建议着长袖T恤、衬衫加单裤等服装。年老体弱者宜着针织长袖衬衫、马甲和长裤。",
          "type": "drsg"
        },
        {
          "brf": "少发",
          "txt": "各项气象条件适宜,无明显降温过程,发生感冒机率较低。",
          "type": "flu"
        },
        {
          "brf": "适宜",
          "txt": "天气较好,赶快投身大自然参与户外运动,尽情感受运动的快乐吧。",
          "type": "sport"
        },
        {
          "brf": "适宜",
          "txt": "天气较好,但丝毫不会影响您出行的心情。温度适宜又有微风相伴,适宜旅游。",
          "type": "trav"
        },
        {
          "brf": "弱",
          "txt": "紫外线强度较弱,建议出门前涂擦SPF在12-15之间、PA+的防晒护肤品。",
          "type": "uv"
        },
        {
          "brf": "较适宜",
          "txt": "较适宜洗车,未来一天无雨,风力较小,擦洗一新的汽车至少能保持一天。",
          "type": "cw"
        },
        {
          "brf": "中",
          "txt": "气象条件对空气污染物稀释、扩散和清除无明显影响,易感人群应适当减少室外活动时间。",
          "type": "air"
        }
      ]
    }
  ]
}

对于上面这种Object里面嵌套有很多List的Json数据,用Gson解析起来简直是不费吹灰之力,不好意思,我又强行给自己加戏了。废话不多说,面对疾风吧!!!

1、建立Bean。众所周知,解析Json最难的是建立对应的实体类,需要一一对应我们的数据才可以正确拿到json数据。

GsonFormat插件你值得拥有。(用了特大号字体来重点突出)


2、当我们请求到的Response转成String后(网络请求暂且不说,不是本次记录的重点)

Gson gson = new Gson();
final WeatherModel weatherModel = gson.fromJson(response,WeatherModel.class);

3、获取对应数据

天气状况:string_weather_icon_code = weatherModel.getHeWeather6().get(0).getNow().getCond_code();

今日天气和生活指数:

tv_weather_title.setText(weatherModel.getHeWeather6().get(0).getNow().getCond_txt());
tv_hi_temp.setText(weatherModel.getHeWeather6().get(0).getDaily_forecast().get(0).getTmp_max()+"");
tv_lo_temp.setText(weatherModel.getHeWeather6().get(0).getDaily_forecast().get(0).getTmp_min()+"");
tv_weather_hum_content.setText(weatherModel.getHeWeather6().get(0).getNow().getHum());
tv_weather_wind_content.setText(weatherModel.getHeWeather6().get(0).getNow().getWind_sc()+"");
tv_weather_lifestyle.setText("生活指数:"+weatherModel.getHeWeather6().get(0).getLifestyle().get(1).getTxt());

真的就是So Easy!!!!!

你可能感兴趣的:(Gson快速解析Json数组)