scrapy框架

scrapy详解

文章目录

        • 1.scrapy 多页爬取
        • 2.scrapy爬取详情页
        • 3.scrapy发送post请求
        • 4.scrapy中间件
        • 5.下载中间件实现UA池

昨日回顾:

1.scrapy框架

五大核心组件:
1.引擎: 负责数据流传递, 各个组件之间的通信
2.spider: 定义了爬取的行为和数据解析
3.调度器: scheduler, 负责调度所有的请求
4.下载器: 负责发送网络请求, 返回响应数据
5.管道: item Pipeline —> item: 定义了要进行数据持久化的字段
pipeline: 与数据库进行交互, 将数据存储在数据库中

scrapy框架的数据流:

spider --> 引擎 --> 调度器 --> 引擎 --> 下载器 --> 引擎 --> spider -->引擎 --> pipeline --> database


1.scrapy 多页爬取

# spider编码在原基础之上, 构建其他页面的url地址, 并利用scrapy.Request发起新的请求, 请求的回调函数依然是parse:
page = 1
base_url = 'http://www.xiaohuar.com/list-1-%s.html'
if self.page < 4:
    page_url = base_url%self.page
    self.page += 1
    yield scrapy.Request(url=page_url, callback=self.parse)
# (其他文件不用改动)

2.scrapy爬取详情页

# 需求: 爬取笑话的标题与详情页连接, 通过详情页链接, 爬取详情页笑话内容
# item编码: 定义数据持久化的字段信息
import scrapy
class JokeItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    title = scrapy.Field()
    content = scrapy.Field()
# spider的编码:
# -*- coding: utf-8 -*-
import scrapy
from ..items import JokeItem

class XhSpider(scrapy.Spider):
    name = 'xh'
    # allowed_domains = ['www.baidu.com']
    start_urls = ['http://www.jokeji.cn/list.htm']

    def parse(self, response):
        li_list = response.xpath('//div[@class="list_title"]/ul/li')
        for li in li_list:
            title = li.xpath('./b/a/text()').extract_first()
            link = 'http://www.jokeji.cn' + li.xpath('./b/a/@href').extract_first()
            yield scrapy.Request(url=link, callback=self.datail_parse, meta={"title":title})

    def datail_parse(self, response):
        joke_list = response.xpath('//span[@id="text110"]//text()').extract()
        title = response.meta["title"]
        content = ''
        for s in joke_list:
            content += s
        item = JokeItem()
        item["title"] = title
        item["content"] = content
        yield item
# Pipeline编码: 数据持久化具体操作
import pymongo

class JokePipeline(object):
    conn = pymongo.MongoClient('localhost', 27017)
    db = conn.haha
    table = db.hahatable

    def process_item(self, item, spider):
        self.table.insert(dict(item))
        return item

    def close_spider(self, spider):
        self.conn.close()
# settings配置编码:
UA伪装
Robots协议
Item_Pipeline

3.scrapy发送post请求

import scrapy
import json


class FySpider(scrapy.Spider):
    name = 'fy'
    # allowed_domains = ['www.baidu.com']
    start_urls = ['https://fanyi.baidu.com/sug']
    def start_requests(self):
        data = {
            'kw':'boy'
        }
        yield scrapy.FormRequest(url=self.start_urls[0], callback=self.parse, formdata=data)

    def parse(self, response):
        print(1111111111111111111111111111111111111111111111111111111111111111111111111111111111)
        print(response.text)
        print(json.loads(response.text))
 print(2222222222222222222222222222222222222222222222222222222222222222222222222222222222)

4.scrapy中间件

# 中间件分类:
	- 下载中间件: DownloadMiddleware
	- 爬虫中间件: SpiderMiddleware
# 中间件的作用:
	- 下载中间件: 拦截请求与响应, 篡改请求与响应
	- 爬虫中间件: 拦截请求与响应, 拦截管道item, 篡改请求与响应, 处理item
# 下载中间件的主要方法:
process_request
process_response
process_exception
# 下载中间件拦截请求, 使用代理ip案例

# spider编码:
import scrapy
class DlproxySpider(scrapy.Spider):
    name = 'dlproxy'
    # allowed_domains = ['www.baidu.com']
    start_urls = ['https://www.baidu.com/s?wd=ip']

    def parse(self, response):
        with open('baiduproxy.html', 'w', encoding='utf-8') as f:
            f.write(response.text)

# Downloadermiddleware编码:
def process_request(self, request, spider):
    request.meta['proxy'] = 'http://111.231.90.122:8888'
    return None


5.下载中间件实现UA池

# spider编码:
class DlproxySpider(scrapy.Spider):
    name = 'dlproxy'
    # allowed_domains = ['www.baidu.com']
    start_urls = ['https://www.baidu.com/','https://www.baidu.com/','https://www.baidu.com/','https://www.baidu.com/','https://www.baidu.com/']
    
    def parse(self, response):
        pass

# 中间件的编码:
from scrapy import signals
from fake_useragent import UserAgent
import random
ua = UserAgent()
ua_list = []
for i in range(100):
    ua_chrome = ua.Chrome
    ua_list.append(ua_chrome)
    
class ...():
    def process_request(self, request, spider):
        # request.meta['proxy'] = 'http://111.231.90.122:8888'
        print(55555555555555555555555555555)
        print(self.ua_pool)
        print(55555555555555555555555555555)
        request.headers['User-Agent'] = random.choice(self.ua_pool)
        return None
   def process_response(self, request, response, spider):
        print(1111111111111111111111111111111)
        print(request.headers["User-Agent"])
        print(2222222222222222222222222222222)
        return response

你可能感兴趣的:(自动化)