This page contains various shortcuts to achieving specific functionality using Gstreamer. These functionalities are mostly related to my Digital Video Transmissionexperiments. There is no easy to read "user manual" for gstreamer but the online the plugin documentation[1] often contains command line examples in addition to the API docs. Other sources of documentation:
The Gstreamer documentation is also available in Devhelp.
To generate a test video stream use videotestsrc
[2]:
gst-launch videotestsrc ! ximagesink
Use the pattern
property to select a specific pattern:
gst-launch videotestsrc pattern=snow ! ximagesink
pattern
can be both numeric [0,16] and symbolic. Some patterns can be adjusted using additional parameters.
To generate a test pattern of a given size and at a given rate a "caps filter" can be used:
gst-launch videotestsrc ! video/x-raw-rgb, framerate=25/1, width=640, height=360 ! ximagesink
TODO: I'd like to add more about "caps filter" but I can not find any comprehensive documentation.
In its simplest form a v4l2src
[3] can be connected directly to a video display sink:
gst-launch v4l2src ! xvimagesink
This will grab the images at the highest possible resolution, which for my Logitech QuickCam Pro 9000 is 1600x1200. Adding a "caps filter" in between we can select the size and the desired frametrate:
gst-launch v4l2src ! video/x-raw-yuv,width=320,height=240,framerate=20/1 ! xvimagesink
If the supported framerates are not good use videorate
[4] to either insert or drop frames. This can also be used to deliver a fixed framerate in case the framerate from the camera varies.
The "caps filter" is also used to select a specific pixel format. The Logitech QuickCam Pro 9000 supports MJPG, YUYV, RGB3, BGR3, YU12 and YV12. The pixel format in the "caps filter" can be specified using fourcc[5] labels:
gst-launch v4l2src ! video/x-raw-yuv,format=\(fourcc\)YUY2,width=320,height=240 ! xvimagesink
YUY2 is the standard YUYV 4:2:2 pixel format and corresponds to the YUYV format on the Logitech QuickCam Pro 9000. For the other formats supported by the Logitechcameras see Pixel formats.
The camera settings can be controlled using Guvcview[6] while the image is captured using gstremer. This requires guvcview to be executed using the -o
or --control_only
command line option.
videocrop
For quick cropping from 4:3 to 16:9, the aspectratiocrop
[7] plugin can be used:
gst-launch v4l2src ! video/x-raw-yuv,width=640,height=480,framerate=15/1 ! aspectratiocrop aspect-ratio=16/9 ! \ ffmpegcolorspace ! xvimagesink
videobox
videoscale
ffmpegcolorspace
gamma
videobalance
smpte
- transitions
smptealpha
- PiP transparency using SMPTE transition patterns.
Encode video to H.264 using x264 and put it into MPEG-TS transport stream:
gst-launch -e videotestsrc ! video/x-raw-yuv, framerate=25/1, width=640, height=360 ! x264enc ! \ mpegtsmux ! filesink location=test.ts
Note that it requires the Fluendo TS Muxer gst-fluendo-mpegmux for muxing and gst-fluendo-mpegdemux for demuxing. The -e
option forces EOS on sources before shutting the pipeline down. This is useful when we write to files and want to shut down by killing gst-launch using CTRL+C or with the kill command[8]. Alternatively, we could use the num-buffers
parameter to specify that we only want to record a certain number of frames. The following graph will record 500 frames and then stop:
gst-launch videotestsrc num-buffers=500 ! video/x-raw-yuv, framerate=25/1, width=640, height=360 ! x264enc \ ! mpegtsmux ! filesink location=test.ts
We can use the playbin
plugin to play the recorded video:
gst-launch -v playbin uri=file:///path/to/test.ts
The -v
option allows us to see which blocks gstreamer decides to use. In this case it will automatically select flutsdemux
for demuxing the MPEG-TS and ffdec_h264
for decoding the H.264 video. Note that there appears to be no x264dec
and no ffenc_h264
.
By default x264enc
will use 2048 kbps but this can be set to a different value:
gst-launch -e videotestsrc ! video/x-raw-yuv, framerate=20/1, width=640, height=480 ! x264enc bitrate=512 ! \ mpegsmux ! filesink location=test.ts
bitrate
is specified in kbps. Note that I've changed the size to 640x480. For H.264 (and most other modern codecs) it is advantageous to use width and height that is an integer multiple of 16. There are also many other options that can be used to optimize compression, quality and speed.
TODO: Find good settings for (1) high quality (2) fast compression (3) etc...
TODO: There is also the ffmux_mpegts
but I can not make it work; it generates a 564 bytes long file.
If we want to encode the webcam we need to include the ffmpegcolorspace
[9] converter block:
gst-launch -e v4l2src ! video/x-raw-yuv, framerate=10/1, width=320, height=240 ! ffmpegcolorspace ! \ x264enc bitrate=256 ! flutsmux ! filesink location=webcam.ts
We can mux the test pattern and the webcam into one MPEG-TS stream. For this we first declare the muxer element and name it "muxer". The name is then used as reference when we connect to it:
gst-launch -e mpegtsmux name="muxer" ! filesink location=multi.ts \ v4l2src ! video/x-raw-yuv,format=\(fourcc\)YUY2,framerate=10/1,width=640,height=480 ! videorate ! ffmpegcolorspace ! x264enc ! muxer. \ videotestsrc ! video/x-raw-yuv, framerate=10/1, width=640, height=480 ! x264enc ! muxer.
We can play the recorded multi.ts file with any MPEG-TS capable player:
gst-launch playbin uri=/path/to/multi.ts
will play one streamTODO: Should be able to get both streams in gstreamer but might require some magic.
Capturing and encoding audio is really easy:
gst-launch -e pulsesrc ! audioconvert ! lamemp3enc target=1 bitrate=64 cbr=true ! filesink location=audio.mp3
This will record an MP3 audio using 64kbps CBR. Of course, we would prefer OGG or format, but the MPEG-TS we want to mux into only supports MPEG audio for now (this is a limitation of the flutsmux
plugin I believe).
To include the recorded audio in the MUX we simply include it in the pipeline and replace the file sink with the muxer:
gst-launch -e flutsmux name="muxer" ! filesink location=multi.ts \ v4l2src ! video/x-raw-yuv, format=\(fourcc\)YUY2, framerate=10/1, width=640, height=480 ! videorate ! ffmpegcolorspace ! x264enc ! muxer. \ videotestsrc ! video/x-raw-yuv, framerate=10/1, width=640, height=480 ! x264enc ! muxer. \ pulsesrc ! audioconvert ! lamemp3enc target=1 bitrate=64 cbr=true ! muxer.
The audio input device can be specified using the device
property:
gst-launch -e pulsesrc device="alsa_input.usb-046d_0809_52A63768-02.analog-mono" ! audioconvert ! \ lamemp3enc target=1 bitrate=64 cbr=true ! filesink location=audio.mp3
The list of valid audio device names can be seen in the listing provided by pactl list
or using the command[10]:
$ pactl list | grep -A2 'Source #' | grep 'Name: ' | cut -d" " -f2
Note that this will also list the monitoring pad of the audio output:
$ pactl list | grep -A2 'Source #' | grep 'Name: ' | cut -d" " -f2 alsa_output.pci-0000_80_01.0.analog-stereo.monitor alsa_input.pci-0000_80_01.0.analog-stereo alsa_input.usb-046d_0809_52A63768-02.analog-mono
To list all monitor source we can use the command[11]:
$ pactl list | grep -A2 'Source #' | grep 'Name: .*\.monitor$' | cut -d" " -f2
TBD
TBD
MPEG-TS can be streamed over UDP (TBC)
Raw videos, e.g. H.264, can be packed into RTP before sending over UDP (TBC)
From man gst-launch
:
Network streaming
Stream video using RTP and network elements.
gst-launch v4l2src ! video/x-raw-yuv,width=128,height=96,format='(fourcc)'UYVY ! ffmpegcolorspace ! ffenc_h263
! video/x-h263 ! rtph263ppay pt=96 ! udpsink host=192.168.1.1 port=5000 sync=false
Use this command on the receiver
gst-launch udpsrc port=5000 ! application/x-rtp, clock-rate=90000,payload=96 ! rtph263pdepay queue-delay=0 !
ffdec_h263 ! xvimagesink
This command would be run on the transmitter
This example does not work for me! See: http://cgit.freedesktop.org/gstreamer/gst-plugins-good/tree/gst/rtp/README#n251
The videomixer
[12] can be used to mix two or more video streams together forming a PiP effect. The following example will put a 200x150 pixels snow test pattern over a 640x360 pixels SMPTE pattern:
gst-launch -e videotestsrc pattern="snow" ! video/x-raw-yuv, framerate=10/1, width=200, height=150 ! videomixer name=mix ! \ ffmpegcolorspace ! xvimagesink videotestsrc ! video/x-raw-yuv, framerate=10/1, width=640, height=360 ! mix.
According to the online documentation[12] the position and Z-order can be adjusted using GstVideoMixerPad
properties[13]. These properties can be accessed using Python or C (see this post) or even from gst-launch
using references to pads, namely sink_i::xpos, sink_i::ypos, sink_i::alpha and sink_i::zorder
, where i is the input stream number starting from 0. The GstVideoMixerPad
properties are specified together with the declaration of the videomixer
:
gst-launch videotestsrc pattern="snow" ! video/x-raw-yuv, framerate=10/1, width=200, height=150 ! \ videomixer name=mix sink_1::xpos=20 sink_1::ypos=20 sink_1::alpha=0.5 sink_1::zorder=3 sink_2::xpos=100 sink_2::ypos=100 sink_2::zorder=2 ! \ ffmpegcolorspace ! xvimagesink videotestsrc pattern=13 ! video/x-raw-yuv, framerate=10/1, width=200, height=150 ! mix. \ videotestsrc ! video/x-raw-yuv, framerate=10/1, width=640, height=360 ! mix.
Thanks to Stefan Kost for this very useful tip.
The order by which input streams are connected to videomixer
inputs is deterministic though difficult to predict. We can have full control over which video stream is connected to which videomixer input by explicitly specifying the pads when we link:
gst-launch \ videomixer name=mix sink_1::xpos=20 sink_1::ypos=20 sink_1::alpha=0.5 sink_1::zorder=3 sink_2::xpos=100 sink_2::ypos=100 sink_2::zorder=2 ! \ ffmpegcolorspace ! xvimagesink \ videotestsrc ! video/x-raw-yuv, framerate=10/1, width=640, height=360 ! mix.sink_0 \ videotestsrc pattern="snow" ! video/x-raw-yuv, framerate=10/1, width=200, height=150 ! mix.sink_1 \ videotestsrc pattern=13 ! video/x-raw-yuv, framerate=10/1, width=200, height=150 ! mix.sink_2
Using this trick we can swap between the two small pictures by simply swapping mix.sink_1
with mix.sink_2
.
We can also move the small video around anywhere using the videobox
[14] element with a transparent border. The videobox
is inserted between the source video and the mixer:
The following pipeline will move the small snow pattern 20 pixels to the right and 25 pixels down:
gst-launch -e videotestsrc pattern="snow" ! video/x-raw-yuv, framerate=10/1, width=200, height=150 ! videobox border-alpha=0 top=-20 left=-25 ! \ videomixer name=mix ! ffmpegcolorspace ! xvimagesink videotestsrc ! video/x-raw-yuv, framerate=10/1, width=640, height=360 ! mix.
Note that the top
and left
values are negative, which means that pixels will be added. Positive value means that pixels are cropped from the original image. If we'd made border-alpha
1.0 we'd seen a black border on the top and the left of the child image.
Transparency of each input stream can be controlled by passing the stream through an alpha filter. This is useful for the main (background) image. For the child image we do not need to add and additional alpha filter because the videobox
can have it's own alpha channel:
gst-launch -e videotestsrc pattern="snow" ! video/x-raw-yuv, framerate=10/1, width=200, height=150 ! \ videobox border-alpha=0 alpha=0.6 top=-20 left=-25 ! videomixer name=mix ! ffmpegcolorspace ! xvimagesink \ videotestsrc ! video/x-raw-yuv, framerate=10/1, width=640, height=360 ! mix.
A border can be added around the child image by adding an additional videobox
[14] where the top/left/right/bottom values correspond to the desired border width andborder-alpha
is set to 1.0 (opaque):
gst-launch -e videotestsrc pattern="snow" ! video/x-raw-yuv, framerate=10/1, width=200, height=150 ! \ videobox border-alpha=1.0 top=-2 bottom=-2 left=-2 right=-2 ! videobox border-alpha=0 alpha=0.6 top=-20 left=-25 ! \ videomixer name=mix ! ffmpegcolorspace ! xvimagesink videotestsrc ! video/x-raw-yuv, framerate=10/1, width=640, height=360 ! mix.
We can of course combine more than two incoming video streams. The following pipeline will take four incoming streams and mix them into a Video Matrix / Wall:
gst-launch -e videomixer name=mix ! ffmpegcolorspace ! xvimagesink \ videotestsrc pattern=1 ! video/x-raw-yuv, framerate=5/1, width=320, height=180 ! videobox border-alpha=0 top=0 left=0 ! mix. \ videotestsrc pattern=15 ! video/x-raw-yuv, framerate=5/1, width=320, height=180 ! videobox border-alpha=0 top=0 left=-320 ! mix. \ videotestsrc pattern=13 ! video/x-raw-yuv, framerate=5/1, width=320, height=180 ! videobox border-alpha=0 top=-180 left=0 ! mix. \ videotestsrc pattern=0 ! video/x-raw-yuv, framerate=5/1, width=320, height=180 ! videobox border-alpha=0 top=-180 left=-320 ! mix. \ videotestsrc pattern=3 ! video/x-raw-yuv, framerate=5/1, width=640, height=360 ! mix.
We had to use a fifth stream as large background stream.
For a more complex example see Video Wall: Live from Pluto.
The texoverlay
[15] plugin can be used to add text to the video stream:
gst-launch videotestsrc ! video/x-raw-yuv,width=640,height=480,framerate=15/1 ! textoverlay text="Hello" ! ffmpegcolorspace ! ximagesink
It has many options for text positioning and alignment. User can also specify font properties as a Pango font description string, e.g. "Sans Italic 24"
.
TODO: A few font description examples.
Elapsed time can be added using the timeoverlay
[16] plugin:
gst-launch videotestsrc ! timeoverlay ! xvimagesink
Timeoverlay
inherits the properties of textoverlay
so the text properties can be set using the same properties:
gst-launch -v videotestsrc ! video/x-raw-yuv, framerate=25/1, width=640, height=360 ! \ timeoverlay halign=left valign=bottom text="Stream time:" shaded-background=true ! xvimagesink
Alternatively, cairotimeoverlay
[17] can be used but it doesn't seem to have any properties:
gst-launch videotestsrc ! cairotimeoverlay ! xvimagesink
Instead of elapsed time, the system date and time can be added using the clockoverlay
[18] plugin:
gst-launch videotestsrc ! clockoverlay ! xvimagesink
Clockloverlay
also inherits the properties of textoverlay
. In addition to that clockoverlay
also allows setting the time format:
gst-launch videotestsrc ! clockoverlay halign=right valign=bottom shaded-background=true time-format="%Y.%m.%D" ! ffmpegcolorspace ! ximagesink
A simple "surveillance camera" implementation using the Logitech QuickCam Vision Pro 9000 and Gstreamer. Frames from the camera are captured at 5 fps. The date, time and elapsed time are added. The stream is displayed on the screen at the captured rate and resolution and saved to an OGG file at 1 fps:
gst-launch -e v4l2src ! video/x-raw-yuv,format=\(fourcc\)YUY2,width=1280,height=720,framerate=5/1 ! \ ffmpegcolorspace ! \ timeoverlay halign=right valign=top ! clockoverlay halign=left valign=top time-format="%Y/%m/%d %H:%M:%S" ! \ tee name="splitter" ! queue ! xvimagesink sync=false splitter. ! \ queue ! videorate ! video/x-raw-yuv,framerate=1/1 ! \ theoraenc bitrate=256 ! oggmux ! filesink location=webcam.ogg
Note: We can replace theoraenc+oggmux with x264enc+someothermuxer but then the pipeline will freeze unless we make the queue
[19] element in front of the xvimagesink
leaky, i.e. "queue leaky=1
".
To create a time-lapse video we have to extract the individual frames from the recorded ogg file then assemble them to a new video using the new framerate.
Extract the individual frames:
ffmpeg -i webcam.ogg -r 1 -sameq -f image2 img/webcam-%05d.jpg
Assemble frames to new video:
ffmpeg -r 50 -i img/webcam-%05d.jpg -vcodec libx264 -b 5000k -r 25 timelapse.mov
See the time-lapse video on YouTube.
The "time-lapse factor" can be controlled by setting the input rate. Since we recorded 1 fps and specified and input rate of 50 fps while assembling the time-lapse videos the effective time-lapse factor will be 0.5 fps corresponding to 2 seconds per frame. If we reduce the input framerate to 25, the time-lapse speed will be half, i.e. 1 second per frame:
ffmpeg -r 25 -i img/webcam-%05d.jpg -vcodec libx264 -b 5000k -r 25 timelapse.mov
See the half-speed time-lapse on YouTube.
In the first example we recorded the captured frames to a theora encoded video file. In order to change the frame rate we had to convert the recorded video to single frames, then re-encode using ffmpeg. A better method is to omit the first video and capture directly to single frames. We can do this using the multifilesink
[20] andmultifilesrc
[21].
This will record the camera stream to PNG files:
gst-launch -e v4l2src ! video/x-raw-yuv,format=\(fourcc\)YUY2,width=1280,height=720,framerate=5/1 ! ffmpegcolorspace ! \ timeoverlay halign=right valign=bottom ! clockoverlay halign=left valign=bottom time-format="%Y/%m/%d %H:%M:%S" ! \ videorate ! video/x-raw-rgb,framerate=1/1 ! ffmpegcolorspace ! pngenc snapshot=false ! multifilesink location="frame%05d.png"
It was a quick hack and it might have been possible to avoid the two ffmpegcolorspace
converters. We can convert to time-lapse video as before (this time I used different codec and framerate:
ffmpeg -i timelapse.mp3 -r 100 -i img/frame%05d.png -sameq -r 50 -ab 320k timelapse.mp4
Note that this time I generated an MP4 video with 50 fps. You can watch the result on YouTube or download the MP4 file here.
Our robotic spaceship has landed on Pluto and is ready to transmit awesome video from the three onboard cameras CAM1, CAM2 and CAM3. We want to show the images on a video wall with a nice background, something like this:
We can accomplish this using picture-in-picture compositing but it is now a little more complicated than the simple examples shown earlier. We have:
textoverlay
showing CAMxtextoverlay
saying "Live from Pluto" at the bottom left of the main screenThe diagram for the pipeline is shown below. The text above the arrows specifies the pixel formats for a given video stream in the pipeline. If the pipeline fails to launch due to an error that says something about streaming task paused, reason not-negotiated (-4), it is very often due to incompatible connection between two blocks. Gstreamer is not always very good at telling that.
And here is the complete pipeline as entered on the command line:
gst-launch -e videomixer name=mix ! ffmpegcolorspace ! xvimagesink \ videotestsrc pattern=0 ! video/x-raw-yuv, framerate=1/1, width=350, height=250 ! \ textoverlay font-desc="Sans 24" text="CAM1" valign=top halign=left shaded-background=true ! \ videobox border-alpha=0 top=-200 left=-50 ! mix. \ videotestsrc pattern="snow" ! video/x-raw-yuv, framerate=1/1, width=350, height=250 ! \ textoverlay font-desc="Sans 24" text="CAM2" valign=top halign=left shaded-background=true ! \ videobox border-alpha=0 top=-200 left=-450 ! mix. \ videotestsrc pattern=13 ! video/x-raw-yuv, framerate=1/1, width=350, height=250 ! \ textoverlay font-desc="Sans 24" text="CAM3" valign=top halign=left shaded-background=true ! \ videobox border-alpha=0 top=-200 left=-850 ! mix. \ multifilesrc location="pluto.jpg" caps="image/jpeg,framerate=1/1" ! jpegdec ! \ textoverlay font-desc="Sans 26" text="Live from Pluto" halign=left shaded-background=true auto-resize=false ! \ ffmpegcolorspace ! video/x-raw-yuv,format=\(fourcc\)AYUV ! mix.
A few notes on the pipeline:
imagefreeze
block which generates a video stream from a single image file. Unfortunately, it seems that this block is very new and not in the gstreamer package that comes with Ubuntu 10.04. Thereofre, I had to do the trick withmultifilesrc
making it read the same file over and over again.multifilesrc
part of the pipeline. That's why there is an extra color conversion block between the textoverlay
and the videomixer
.videobox
elements are used to add a transparent border to the small video feed causing the real video to "move"You can watch the Live from Pluto GStreamer video wall in action on YouTube.
gst-inspect ffmpegcolorspace
.Other useful links: