平衡树:对于任意一个节点,左子树和右子树的高度差不能超过1
平衡因子:任意一个节点左子树与右子树的高度差.
AVL树是平衡二叉树的一种,AVL树本身首先是一棵二叉搜索树。因为二分搜索树当插入的数据比较有规律时,二分搜索树最差的情况可能会退化为一个链表。就失去了使用这种数据结构来处理数据的意义。所以AVL这种自平衡二叉查找树就最先被发明出来了。AVL树也被称为高度平衡树,增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。
使用java实现AVLTree:
import java.util.ArrayList;
/**
* @author ymn
* @version 1.0
* @date 2020\6\2 0002
*/
public class AVLTree<K extends Comparable<K>,V> {
private class Node{
public K key;
public V value;
public Node left,right;
public int height;
public Node(K key,V value){
this.key = key;
this.value = value;
left = null;
right = null;
height = 1;
}
}
private Node root;
private int size;
public AVLTree(){
root = null;
size = 0;
}
public int getSize(){
return size;
}
public boolean isEmpty(){
return size == 0;
}
//判断该二叉树是否是一颗二分搜索树
public boolean isBST(){
//利用二分搜索树中序遍历的结果是二分搜索树中数据从小到大排列的结果
ArrayList<K> keys = new ArrayList<>();
inOrder(root,keys);
for (int i = 1;i < keys.size(); i++){
if (keys.get(i - 1).compareTo(keys.get(i)) > 0){
return false;
}
}
return true;
}
//中序遍历
private void inOrder(Node node,ArrayList<K> keys){
if (node == null)
return;
inOrder(node.left,keys);
keys.add(node.key);
inOrder(node.right,keys);
}
//判断该二叉树是否是一颗平衡二叉树
public boolean isBalanced(){
return isBalanced(root);
}
//判断以node为根的二叉树是否是平衡二叉树,递归算法
private boolean isBalanced(Node node){
if (node == null){
return true;
}
int balanceFactor = getBalanceFactor(node);
//Math.abs为取绝对值
if (Math.abs(balanceFactor) > 1){
return false;
}
return isBalanced(node.left) && isBalanced(node.right);
}
//对节点y进行右旋转操作,返回旋转后新的节点x
private Node rightRotate(Node y){
Node x = y.left;
Node xRight = x.right;
//向右旋转过程
x.right = y;
y.left = xRight;
//更新height
y.height = Math.max(getHeight(y.left),getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left),getHeight(x.right)) + 1;
return x;
}
//对节点y进行左旋转操作,返回旋转后新的节点x
private Node leftRotate(Node y){
Node x = y.right;
Node xLeft = x.left;
//向左旋转处理
x.left = y;
y.left = xLeft;
//更新height
y.height = Math.max(getHeight(y.left),getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left),getHeight(x.right)) + 1;
return x;
}
//获取节点的高度
private int getHeight(Node node){
if (node == null){
return 0;
}
return node.height;
}
//获得节点的平衡因子
private int getBalanceFactor(Node node){
if (node == null){
return 0;
}
return getHeight(node.left) - getHeight(node.right);
}
public void add(K key,V value){
root = add(root,key,value);
}
//向以node为根的二分搜索树中插入元素(key,value),递归算法
//返回插入新节点后二分搜索树的根
private Node add(Node node,K key,V value){
if(node == null){
size ++;
return new Node(key, value);
}
if (key.compareTo(node.key) < 0){
node.left = add(node.left,key, value);
}else if(key.compareTo(node.key) > 0){ //插入重复元素说明什么也不做
node.right = add(node.right,key, value);
}else {
node.value = value;
}
//更新height
node.height = 1 + Math.max(getHeight(node.left),getHeight(node.right));
//计算平衡因子
int balanceFactor = getBalanceFactor(node);
// if (Math.abs(balanceFactor) > 1){
// System.out.println("unbalanced" + balanceFactor);
// }
//平衡维护
//LL
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
return rightRotate(node);
//RR
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
return leftRotate(node);
//LR
if(balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
//先对不平衡节点的左孩子进行左旋转
node.left = leftRotate(node.left);
//在进行一次右旋转
return rightRotate(node);
}
//RL
if (balanceFactor < -1 && getBalanceFactor(node.right) > 0){
//先对不平衡节点的右孩子进行右旋转
node.right = rightRotate(node.right);
//在进行一次左旋转
return leftRotate(node);
}
return node;
}
//返回以node为根节点的二分搜索树中,key所在的节点
private Node getNode(Node node,K key){
if (node == null){
return null;
}
if (key.compareTo(node.key) == 0){
return node;
}else if (key.compareTo(node.key) < 0){
return getNode(node.left,key);
}else { //key.compareTo(node.key) > 0
return getNode(node.right,key);
}
}
public boolean contains(K key){
return getNode(root,key) != null;
}
public V get(K key){
Node node = getNode(root,key);
return node == null ? null : node.value;
}
public void set(K key, V value) {
Node node = getNode(root,key);
if (node == null){
throw new IllegalArgumentException(key + "dose't exist!");
}
node.value = value;
}
//返回以node为根的二分搜索树的最小值所在的节点,递归算法
private Node minimum(Node node){
if (node.left == null){
return node;
}
return minimum(node.left);
}
public V remove(K key){
Node node = getNode(root,key);
if (node != null){
root = remove(root,key);
return node.value;
}
return null;
}
//删除掉以node为根的二分搜索树中值为e节点,递归算法
//返回删除节点后新的二分搜索树的根
private Node remove(Node node,K key){
if (node == null){
return null;
}
Node returnNode;
if (key.compareTo(node.key) < 0){
node.left = remove(node.left,key);
returnNode = node;
}else if (key.compareTo(node.key) > 0){
node.right = remove(node.right,key);
returnNode = node;
}
else { //key == node.key
//待删除节点左子树为空的情况
if (node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
returnNode = rightNode;
}
//待删除节点右子树为空的情况
else if (node.right == null){
Node leftNode = node.left;
node.left = null;
size --;
returnNode = leftNode;
}
else {
//待删除节点均不为空的情况
//找到比待删除节点大的最小节点,即待删除节点右子树的最小节点(后继节点)。
//或找到比待删除节点小的最大节点,即待删除节点左子树的最大节点(前驱节点)
//用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
successor.right = remove(node.right, successor.key);
successor.left = node.left;
node.left = null;
node.right = null;
returnNode = successor;
}
}
//如果删除节点后returnNode为空,比如删除的是叶子节点
if (returnNode == null){
return null;
}
//更新height
returnNode.height = 1 + Math.max(getHeight(returnNode.left),getHeight(returnNode.right));
//计算平衡因子
int balanceFactor = getBalanceFactor(returnNode);
//平衡维护
//LL
if (balanceFactor > 1 && getBalanceFactor(returnNode.left) >= 0)
return rightRotate(returnNode);
//RR
if (balanceFactor < -1 && getBalanceFactor(returnNode.right) <= 0)
return leftRotate(returnNode);
//LR
if(balanceFactor > 1 && getBalanceFactor(returnNode.left) < 0) {
//先对不平衡节点的左孩子进行左旋转
returnNode.left = leftRotate(returnNode.left);
//在进行一次右旋转
return rightRotate(returnNode);
}
//RL
if (balanceFactor < -1 && getBalanceFactor(returnNode.right) > 0){
//先对不平衡节点的右孩子进行右旋转
returnNode.right = rightRotate(returnNode.right);
//在进行一次左旋转
return leftRotate(returnNode);
}
return returnNode;
}
}