单例模式最佳写法

单例模式用在哪里,大家都知道,但是写法是怎么样?怎么写才是最好的?

单例模式最佳写法_第1张图片

一般是这么写的,但是遇到同步调用,线程就是不安全的,所以很多人进行了修改,加了个同步锁。

单例模式最佳写法_第2张图片

这样写可以很好的工作,但是缺点是效率低。

实际上,早在JDK1.5就引入volatile关键字,所以又有了一种更好的双重校验锁写法:

单例模式最佳写法_第3张图片

那什么是volatile?

用volatile修饰的变量,线程在每次使用变量的时候,都会读取变量修改后的最的值。volatile很容易被误用,用来进行原子性操作。


下面看一个例子,我们实现一个计数器,每次线程启动的时候,会调用计数器inc方法,对计数器进行加一

执行环境——jdk版本:jdk1.6.0_31 ,内存 :3G cpu:x86 2.4G

public class Counter {
 
    public static int count = 0;
 
    public static void inc() {
 
        //这里延迟1毫秒,使得结果明显
        try {
            Thread.sleep(1);
        } catch (InterruptedException e) {
        }
 
        count++;
    }
 
    public static void main(String[] args) {
 
        //同时启动1000个线程,去进行i++计算,看看实际结果
 
        for (int i = 0; i < 1000; i++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    Counter.inc();
                }
            }).start();
        }
 
        //这里每次运行的值都有可能不同,可能为1000
        System.out.println("运行结果:Counter.count=" + Counter.count);
    }
}
运行结果:Counter.count=995


实际运算结果每次可能都不一样,本机的结果为:运行结果:Counter.count=995,可以看出,在多线程的环境下,Counter.count并没有期望结果是1000

很多人以为,这个是多线程并发问题,只需要在变量count之前加上volatile就可以避免这个问题,那我们在修改代码看看,看看结果是不是符合我们的期望

public class Counter {
 
    public volatile static int count = 0;
 
    public static void inc() {
 
        //这里延迟1毫秒,使得结果明显
        try {
            Thread.sleep(1);
        } catch (InterruptedException e) {
        }
 
        count++;
    }
 
    public static void main(String[] args) {
 
        //同时启动1000个线程,去进行i++计算,看看实际结果
 
        for (int i = 0; i < 1000; i++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    Counter.inc();
                }
            }).start();
        }
 
        //这里每次运行的值都有可能不同,可能为1000
        System.out.println("运行结果:Counter.count=" + Counter.count);
    }
}
运行结果:Counter.count=992

运行结果还是没有我们期望的1000,下面我们分析一下原因



在 java 垃圾回收整理一文中,描述了jvm运行时刻内存的分配。其中有一个内存区域是jvm虚拟机栈,每一个线程运行时都有一个线程栈,

线程栈保存了线程运行时候变量值信息。当线程访问某一个对象时候值的时候,首先通过对象的引用找到对应在堆内存的变量的值,然后把堆内存

变量的具体值load到线程本地内存中,建立一个变量副本,之后线程就不再和对象在堆内存变量值有任何关系,而是直接修改副本变量的值,

在修改完之后的某一个时刻(线程退出之前),自动把线程变量副本的值回写到对象在堆中变量。这样在堆中的对象的值就产生变化了。下面一幅图

描述这写交互
java volatile1

read and load 从主存复制变量到当前工作内存
use and assign 执行代码,改变共享变量值
store and write 用工作内存数据刷新主存相关内容

其中use and assign 可以多次出现

但是这一些操作并不是原子性,也就是 在read load之后,如果主内存count变量发生修改之后,线程工作内存中的值由于已经加载,不会产生对应的变化,所以计算出来的结果会和预期不一样

对于volatile修饰的变量,jvm虚拟机只是保证从主内存加载到线程工作内存的值是最新的

例如假如线程1,线程2 在进行read,load 操作中,发现主内存中count的值都是5,那么都会加载这个最新的值

在线程1堆count进行修改之后,会write到主内存中,主内存中的count变量就会变为6

线程2由于已经进行read,load操作,在进行运算之后,也会更新主内存count的变量值为6

导致两个线程及时用volatile关键字修改之后,还是会存在并发的情况。

你可能感兴趣的:(java)