计算机网络——路由算法

一、什么是路由?

    路由(routing)是指分组从源到目的地时,决定端到端路径的网络范围的进程。路由工作在OSI参考模型第三层——网络层的数据包转发设备。路由器通过转发数据包来实现网络互连。虽然路由器可以支持多种协议(如TCP/IP、IPX/SPX、AppleTalk等协议),但是在我国绝大多数路由器运行TCP/IP协议。路由器通常连接两个或多个由IP子网或点到点协议标识的逻辑端口,至少拥有1个物理端口。路由器根据收到数据包中的网络层地址以及路由器内部维护的路由表决定输出端口以及下一跳地址,并且重写链路层数据包头实现转发数据包。路由器通过动态维护路由表来反映当前的网络拓扑,并通过网络上其他路由器交换路由和链路信息来维护路由表。

二、什么是路由算法

    路由算法,又名选路算法,可以根据多个特性来加以区分。算法的目的是找到一条从源路由器到目的路由器的“好”路径(即具有最低费用的路径)。算法设计者的特定目标影响了该路由协议的操作;具体来说存在着多种路由算法,每种算法对网络和路由器资源的影响都不同;由于路由算法使用多种度量标准(metric),从而影响到最佳路径的计算。

三、路由算法的设计目标

    路由算法通常具有下列设计目标的一个或多个:优化、简单、低耗、健壮、稳定、快速聚合、灵活性。
    (1)最优化:指路由算法选择最佳路径的能力。根据metric的值和权值来计算。
    (2)简洁性:算法设计必须简洁。路由协议在网络中必须高效地提供其功能,尽量减少软件和应用的开销。这在当实现路由算法的软件必须运行在物理资源有限的计算机上时尤其重要。
    (3)坚固性:路由算法处于非正常或不可预料的环境时,如硬件故障、负载过高或操作失误时,都能正确运行。由于路由器分布在网络联接点上,所以在它们出故障时会产生严重后果。最好的路由器算法通常能经受时间的考验,并在各种网络环境下被证实是可靠的。
    (4)快速收敛:收敛是在最佳路径的判断上所有路由器达到一致的过程。当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。路由更新信息遍及整个网络,引发重新计算最佳路径,最终达到所有路由器一致公认的最佳路径。收敛慢的路由算法会造成路径循环或网络中断。
    (5)灵活性:路由算法要求可以快速、准确地适应各种网络环境。例如,某个网段发生故障,路由算法要能很快发现故障,并为使用该网段的所有路由选择另一条最佳路径。

四、路由算法度量标准

    路由算法使用了许多种不同的度量标准去决定最佳路径。复杂的路由算法可能采用多种度量来选择路由,通过一定的加权运算,将它们合并为单个的复合度量、再填入路由表中,作为寻径的标准。
    通常所使用的度量有:路径长度、可靠性、时延、带宽、负载、通信成本等。

路径长度

    路径长度是最常用的路由metric。一些路由协议允许网管给每个网络链接人工赋以代价值,这种情况下,路由长度是所经过各个链接的代价总和。其它路由协议定义了跳数,即分组在从源到目的的路途中必须经过的网络产品,如路由器的个数。

可靠性

    可靠性,在路由算法中指网络链接的可依赖性(通常以位误率描述),有些网络链接可能比其它的失效更多,网路失效后,一些网络链接可能比其它的更易或更快修复。任何可靠性因素都可以在给可靠率赋值时计算在内,通常是由网管给网络链接赋以metric值。

路由延迟

    路由延迟指分组从源通过网络到达目的所花时间。很多因素影响到延迟,包括中间的网络链接的带宽、经过的每个路由器的端口队列、所有中间网络链接的拥塞程度以及物理距离。因为延迟是多个重要变量的混合体,它是个比较常用且有效的metric。

带宽

    带宽指链接可用的流通容量。在其它所有条件都相等时,10Mbps的以太网链接比64kbps的专线更可取。虽然带宽是链接可获得的最大吞吐量,但是通过具有较大带宽的链接做路由不一定比经过较慢链接路由更好。例如,如果一条快速链路很忙,分组到达目的所花时间可能要更长。

负载

    负载指网络资源,如路由器的繁忙程度。负载可以用很多方面计算,包括CPU使用情况和每秒处理分组数。持续地监视这些参数本身也是很耗费资源的。

通信代价

    通信代价是另一种重要的metric,尤其是有一些公司可能关心运作费用甚于关心性能。即使线路延迟可能较长,他们也宁愿通过自己的线路发送数据而不采用昂贵的公用线路。

五、常见的路由算法

1. LS算法

    采用LS算法时,每个路由器必须遵循以下步骤:

ls算法的步骤流程

    1、确认在物理上与之相连的路由器并获得它们的IP地址。当一个路由器开始工作后,它首先向整个网络发送一个“HELLO”分组数据包。每个接收到数据包的路由器都将返回一条消息,其中包含它自身的IP地址。
    2、测量相邻路由器的延时(或者其他重要的网络参数,比如平均流量)。为做到这一点,路由器向整个网络发送响应分组数据包。每个接收到数据包的路由器返回一个应答分组数据包。将路程往返时间除以2,路由器便可以计算出延时。(路程往返时间是网络当前延迟的量度,通过一个分组数据包从远程主机返回的时间来测量。)该时间包括了传输和处理两部分的时间——也就是将分组数据包发送到目的地的时间以及接收方处理分组数据包和应答的时间。
    3、向网络中的其他路由器广播自己的信息,同时也接收其他路由器的信息。在这一步中,所有的路由器共享它们的知识并且将自身的信息广播给其他每一个路由器。这样,每一个路由器都能够知道网络的结构以及状态。
    4、使用一个合适的算法,确定网络中两个节点之间的最佳路由。在这一步中,路由器选择通往每一个节点的最佳路由。它们使用一个算法来实现这一点,如Dijkstra最短路径算法。在这个算法中,一个路由器通过收集到的其他路由器的信息,建立一个网络图。这个图描述网络中的路由器的位置以及它们之间的链接关系。每个链接都有一个数字标注,称为权值或成本。这个数字是延时和平均流量的函数,有时它仅仅表示节点间的跃点数。例如,如果一个节点与目的地之间有两条链路,路由器将选择权值最低的链路。

2.Dijkstra算法

Dijkstra算法执行下列步骤

    1、路由器建立一张网络图,并且确定源节点和目的节点,在这个例子里我们设为V1和V2。然后路由器建立一个矩阵,称为“邻接矩阵”。在这个矩阵中,各矩阵元素表示权值。例如,[i, j]是节点Vi与Vj之间的链路权值。如果节点Vi与Vj之间没有链路直接相连,它们的权值设为“无穷大”。
    2、路由器为网路中的每一个节点建立一组状态记录。此记录包括三个字段:
        a、前序字段——表示当前节点之前的节点。
        b、长度字段——表示从源节点到当前节点的权值之和。
        c、标号字段——表示节点的状态。每个节点都处于一个状态模式:“永久”或“暂时”。
    3、路由器初始化(所有节点的)状态记录集参数,将它们的长度设为“无穷大”,标号设为“暂时”。
    4、路由器设置一个T节点。例如,如果设V1是源T节点,路由器将V1的标号更改为“永久”。当一个标号更改为“永久”后,它将不再改变。一个T节点仅仅是一个代理而已。
    5、路由器更新与源T节点直接相连的所有暂时性节点的状态记录集。
    6、路由器在所有的暂时性节点中选择距离V1的权值最低的节点。这个节点将是新的T节点。
    7、如果这个节点不是V2(目的节点),路由器则返回到步骤5。
    8、如果节点是V2,路由器则向前回溯,将它的前序节点从状态记录集中提取出来,如此循环,直到提取到V1为止。这个节点列表便是从V1到V2的最佳路由。

3.链路向量选路算法

    链路状态算法(也称最短路径算法)发送路由信息到互联网上所有的结点,然而对于每个路由器,仅发送它的路由表中描述了其自身链路状态的那一部分。

4.距离向量算法

    距离向量算法(也称为Bellman-Ford算法)则要求每个路由器发送其路由表全部或部分信息,但仅发送到邻近结点上。从本质上来说,链路状态算法将少量更新信息发送至网络各处,而距离向量算法发送大量更新信息至邻接路由器。 ——由于链路状态算法收敛更快,因此它在一定程度上比距离向量算法更不易产生路由循环。但另一方面,链路状态算法要求比距离向量算法有更强的CPU能力和更多的内存空间,因此链路状态算法将会在实现时显得更昂贵一些。

你可能感兴趣的:(Linux网络编程)