在Qt Creator编译器编写完成。
这个部分包括了一些参数的定义和文件的导入。
ps:以下代码需要提前 using namespace cv;
void A(QStringList files, Size square_size, Size board_size){
int image_count = 0;//图像数量
Size image_size;//图像尺寸
vector<Point2f> image_points_buf;//缓存每幅图上检测的角点
vector<vector<Point2f>> image_points_seq;//保存检测到的所有角点
//读文件,检测所有角点,再进行subpixel精确化
for(int m = 0; m < 文件数量; m++){
image_count ++;
QString fileName = files[m];
Mat imageInput = imread(fileName.toStdString());
//初始化
if(image_count == 1){
image_size.width = imageInput.cols;
image_size.weight = imageInput.rows;
}
if(0 == findCheseboardCorners(imageInput, board_size, image_points_buf)){
exit(1);
}
else{
Mat view_gray;
cvtColor(imageInput, view_gray, CV_RGB2GRAY);
cornerSubpix(view_gray, image_points_buf, Size(5,5), Size(-1,-1),
TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 20, 0.1));
image_points_seq.pushback(image_points_buf);
drawCheseboardCorners(view_gray, board_size, image_points_buf, false);
}
}
}
这个部分包括了角点和相机参数的定义:
int cornerNum = board_size.width * board_size.height;//角点个数
vector<vector<Point3f>> object_points;//保存标定板上角点上的三维坐标
Mat cameraMatrix = Mat(3, 3, CV_32FC1, Scalar::all(0));//K
vector<int> point_counts;
Mat distCoeffs = Mat(1, 5, CV_32FC1, Scalar::all(0));//畸变系数
vector<Mat> tvecsMat;
vector<Mat> rvecsMat;
int i, j, t;
{
for(t = 0; t < image_count; t++){
vector<Point3f> tempPointSet;
for(i = 0; i < board_size.height; i++){
for(j = 0; j < board_size.width; j++){
Point3f realPoint;
realPoint.x = i * square_size.width;
realPoint.y = j * square_size.height;
realPoint.z = 0;
tempPointSet.push_back(realPoint);
object_points.push_back(tempPointSet);
}
}
}
}
for(i = 0; i < image_count; i++){
point_counts.push_back(board_size.width * board_size.height);
}
calibrateCamera(object_points, image_points+seq, image_size, cameraMatrix,
distCoeffs, rvecsMat, tvecsMat, 0);
double total_err = 0.0;
double err = 0.0;
vector<Point2f> image_points2;//保存重投影的点
for(i = 0; i < image_count; i++){
vector<Point3f> tempPointSet = object_points[i];
projectPoints(tempPointSet, rvecsMat[i], tvecsMat[i], cameraMatrix, distCoeffs, image_points2);
vector<Point2f> tempImagePoint = image_points_seq[i];
Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2);
Mat image_points2Mat = Mat(1, tempImagePoint2.size(), CV_32FC2);
for(j = 0; j < tempImagePoint.size(); j++){
image_points2Mat.at<Vec2f>(0, j) = Vec2f(image_points2[j].x, image_points2[j].y);
tempImagePointMat.at<Vec2f>(0, j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);
}
err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
total_err += err /= point_counts[i];
}