- 商汤绝影端到端自动驾驶的迭代优化
AGI大模型与大数据研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
自动驾驶,端到端,迭代优化,深度学习,感知,规划,控制,模型训练,数据增强,模型微调1.背景介绍随着人工智能和计算机视觉技术的飞速发展,自动驾驶汽车从科幻走进了现实。商汤科技推出的绝影端到端自动驾驶系统,就是其中的佼佼者。本文将深入剖析商汤绝影端到端自动驾驶系统的迭代优化过程,帮助读者理解其背后的技术原理和架构设计。2.核心概念与联系商汤绝影端到端自动驾驶系统的核心架构如下:graphLRA[感知
- 使用OpenCV在Visual Studio上编译x86或x64平台的应用程序
程序世界航海
opencvvisualstudio人工智能编程
OpenCV是一个广泛使用的计算机视觉库,它提供了丰富的图像处理和计算机视觉算法。如果你想在VisualStudio上编译一个使用OpenCV的应用程序,并且需要针对特定的x86或x64平台进行优化,那么本文将为你提供一些指导。以下是在VisualStudio中编译x86或x64平台上的OpenCV应用程序的步骤:步骤1:安装VisualStudio和OpenCV首先,确保你已经安装了最新版本的V
- 【趣味随笔】盘点那些知名的机器人公司
嵌小超
趣味随笔机器学习机器人
:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】:文章若有幸对你有帮助,可点赞收藏⭐不迷路:内容若有错误,敬请留言指正!原创文,转载注明出处文章目录一、自动驾驶方向新势力车企系统供应商Robotaxi物流配送二、AR/VR硬件方向AR/VR硬件系统软件三、传感器方向双日相机RGBD相机激光
- 用realsense d435i传感器在实际环境中跑ORB_SLAM3,顺带解决一部分编译问题
睫力上爬
SLAM日常折腾传感器ORB_SLAM3
是的ORB_SLAM3来了,时隔五年,它来带的惊喜到底是啥呢?一个完全依赖于最大后验估计(MAP)的单/双目惯导融合系统高回召的地点识别功能(High-recallplacerecognition)第一个完整的多地图系统(multi-map)一个抽象的相机模型表示论文地址论文细节今天不说,今天主要先拿到代码,并且用自己的传感器试试实际效果编译终端拉代码记得提前安装好OpenCV,Eigen,和Pa
- 【ORB_SLAM系列3】—— 如何在Ubuntu18.04中使用自己的单目摄像头运行ORB_SLAM3(亲测有效,踩坑记录)
啥也不会的研究僧
SLAM算法安装与实践记录ubuntu计算机视觉人工智能自动驾驶
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、ORB_SLAM3源码编译二、ORB_SLAM3实时单目相机测试1.查看摄像头的话题2.运行测试三.运行测试可能的报错1.报错一(1)问题描述(2)原因分析(3)解决2.报错二(1)问题描述(2)解决前言本次教程运行ORB_SLAM3,所需的环境如下:Ubuntu18.04、ros版本:melodicOpencv4.5
- OpenCV 简介
奇点创客
OpenCV
OpenCV(OpenSourceComputerVisionLibrary,开源计算机视觉库:http://opencv.org)是一个开放源代码库,其中包含数百种计算机视觉算法。本文档介绍所谓的OpenCV2.xAPI,与基于C的OpenCV1.xAPI相比,该API本质上是一套C++API(自OpenCV2.4发行以来,不推荐再使用CAPI,并且不使用“C”编译器进行测试)。OpenCV具有
- ORB-SLAM3源码的学习:GeometricTools文件
PaLu-LvL
计算机视觉#ORB-SLAM3c++计算机视觉ubuntu人工智能学习
前言GeometricTools提供了两种几何计算功能:1.计算两个关键帧之间的基础矩阵、2.通过三角化算法从两个视角恢复三维点。这部分功能在ORB-SLAM2中就已经介绍过了,这里不过多赘述。1.头文件GeometricTools.h除了计算基础矩阵和三角化恢复三维点外,头文件中还提供了两种用于比较矩阵的模板函数。第一个函数用于比较一个OpenCV矩阵和一个Eigen矩阵,第二个函数用于比较两个
- ORB-SLAM3的源码学习: Settings.cc:Settings::readImageInfo读取图像信息
PaLu-LvL
计算机视觉#ORB-SLAM3计算机视觉opencvubuntuc++人工智能学习
前言简单总结一下:这个函数的主要目的是从配置文件中读取和设置与相机图像尺寸相关的各种参数。它会根据需要调整图像的宽度和高度,并根据这些调整更新相机的校准参数。如果是立体相机或带IMU的相机,还会同时更新第二个相机的校准参数。最终,这些调整确保图像和相机校准信息的一致性。1.函数声明voidSettings::readImageInfo(cv::FileStorage&fSettings)2.函数定
- ORB-SLAM2源码学习:System.cc:System::System SLAM系统的构造函数
PaLu-LvL
计算机视觉#ORB-SLAM2c++学习计算机视觉算法opencv
前言ORB-SLAM2源码学习:rgbd_tum.cc源文件-CSDN博客之前我们在具体的实例的代码中初始化了一个SLAM的系统,现在让我们来看看这个SLAM的构造函数具体进行了什么操作。总的来说:该函数主要干了以下事情:1.初始化一些参数(列表初始化)2.加载并检查配置文件和词汇表3.创建一些对象如关键帧数据库、地图、绘制器等。4.启动并初始化多个线程:跟踪线程、本地建图线程、回环检测线程、可视
- ORB-SLAM3的源码学习: Settings.cc:Settings::readCamera1/readCamera2 从配置文件中加载相机参数
PaLu-LvL
计算机视觉#ORB-SLAM3计算机视觉ubuntuopencv人工智能数码相机学习
前言需要从配置文件yaml文件中读取相机参数才能用于后续计算。1.函数声明读取相机1的参数:voidSettings::readCamera1(cv::FileStorage&fSettings)如果是双目相机则还要读取相机2的参数:voidSettings::readCamera2(cv::FileStorage&fSettings)2.函数定义相机11.读取相机模型3的模型加入了针孔相机模型以
- 自动驾驶系列—颠覆未来驾驶:深入解析自动驾驶线控转向系统技术
学步_技术
自动驾驶自动驾驶人工智能机器学习线控系统
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- 自动驾驶---Motion Planning之参考线Path平滑
智能汽车人
自动驾驶人工智能
1背景有了由lane_segment插值得到的粗糙参考线,这种参考线是无法输出给下游使用的,需要进一步的处理使得参考线更加平滑,才能供下游控制模块使用。Apollo中共有三种参考线平滑算法,分别为:1.QpSplineSmoother2.SpiralReferenceLineSmoother3.DiscretePointsSmoother目前Apollo中默认配置为最后一种,基于离散点的平滑。这种
- 自动驾驶---Motion Planning之LaneChange
智能汽车人
自动驾驶人工智能
1背景在Apollo中,有比较多的Decider(决策器),上篇博客《自动驾驶---MotionPlanning之Decider》中笔者也大概介绍了每个Deicder的作用。本篇博客笔者主要介绍换道的决策内容,因为在自动驾驶中(严格意义上来讲,目前还属于辅助驾驶),变道的灵活性是用户评价该功能是否好用很重要的一部分,变道迟缓或者激进都是不好的体验,所以本篇博客会结合Apollo中的LaneChan
- AWS上基于Llama 3模型检测Amazon Redshift里文本数据的语法和语义错误的设计方案
weixin_30777913
数据仓库云计算awsllama
一、技术栈选型核心服务:AmazonRedshift:存储原始文本和检测结果AmazonBedrock:托管Llama370B模型AWSLambda:无服务计算(Python运行时)AmazonS3:中间数据存储AWSStepFunctions:工作流编排辅助工具:psycopg2:RedshiftPython连接器boto3:AWSSDKforPythonPandas:数据批处理JSONSche
- 一文带你了解人工智能:现状、应用、变革及未来展望
空青726
人工智能chatgptai大数据机器学习深度学习创业创新
近年来,人工智能(AI)的发展势头迅猛,它已经渗透到了我们生活的方方面面。从智能手机的语音助手到自动驾驶汽车,从智能家居到医疗诊断,AI正在改变着我们的生活方式。本文将结合时事,为大家介绍当前人工智能的发展形势、在生活中的应用、人工智能的变革以及未来的发展方向。一、人工智能的发展形势1.深度学习:深度学习是当前AI领域的热门话题。通过模拟人脑神经元之间的相互作用,深度学习算法能够从大量数据中提取出
- AWS上基于高德API验证Amazon Redshift里国内地址数据正确性的设计方案
weixin_30777913
python数据仓库云计算aws
该方案通过无服务架构实现高可扩展性,结合分页查询和批量更新确保高效处理海量数据,同时通过密钥托管和错误重试机制保障安全性及可靠性。一、技术栈组件技术选型说明计算层AWSLambda无服务器执行,适合事件驱动、按需处理,成本低数据存储AmazonRedshift存储原始地址数据及验证结果API调用高德地理编码API提供地址标准化及验证能力开发语言Python3.9+使用requests处理HTTP请
- 基于A*算法与贝塞尔曲线的路径规划与可视化:从栅格地图到平滑路径生成
机器懒得学习
pygamepython
引言在机器人导航、自动驾驶和游戏开发等领域,路径规划是一个核心问题。如何高效地找到从起点到终点的最优路径,并且确保路径的平滑性和安全性,是许多应用场景中的关键挑战。本文将介绍一种结合A算法和贝塞尔曲线的路径规划方法,并通过Pygame实现可视化。我们将从栅格地图的加载与处理开始,逐步讲解A算法的实现、贝塞尔曲线的生成,以及如何通过鼠标交互实现动态路径规划。通过本文,你将掌握如何在实际项目中应用这些
- 《DeepSeek Janus Pro 7B:多模态人工智能大模型部署全攻略》
空云风语
神经网络人工智能深度学习人工智能
《DeepSeekJanusPro7B:多模态人工智能大模型部署全攻略》引言:开启多模态AI新世界在科技飞速发展的当下,多模态AI已成为人工智能领域中最耀眼的明星,正以前所未有的速度改变着我们的生活与工作方式。从智能语音助手到图像识别系统,从自动驾驶汽车到智能医疗诊断,多模态AI的身影无处不在,它让机器能够理解和处理多种类型的信息,如文本、图像、音频等,从而实现更加智能、高效的交互。DeepSee
- 优化算法全景解析:从梯度下降到群体智能
welcome_123_
算法python人工智能
一、引言:为什么需要优化算法?在AlphaGo击败人类围棋冠军的背后,在特斯拉自动驾驶系统实时决策的瞬间,在推荐系统精准推送内容的过程中,优化算法始终是推动这些技术落地的核心引擎。无论是机器学习模型的训练,还是复杂系统的参数调优,优化算法的本质是:在给定的约束条件下,找到使目标函数最优的解。本文将深入解析优化算法的核心原理、经典方法、现代进展及实战应用,助你全面掌握这一技术利器。二、优化算法分类图
- 基于深度学习YOLOv8的海洋动物检测系统(Python+PySide6界面+训练代码)
深度学习&目标检测实战项目
深度学习YOLOpython目标检测人工智能开发语言
引言近年来,计算机视觉技术在各行各业中得到了广泛的应用,特别是在智能监控、自动驾驶、医疗诊断等领域。深度学习,尤其是卷积神经网络(CNN)的出现,极大地提高了计算机处理图像和视频的能力。在这一领域,YOLO(YouOnlyLookOnce)系列模型以其高效且准确的目标检测能力,成为了当下最为流行的深度学习模型之一。在海洋生物保护、海洋环境监测等应用中,快速识别和检测海洋动物种类对于科学研究和保护工
- 水下 SLAM 定位模组的设计与实现
赵谨言
论文经验分享毕业设计笔记
标题:水下SLAM定位模组的设计与实现内容:1.摘要摘要:本文介绍了水下SLAM定位模组的设计与实现。首先,对水下定位技术的背景和需求进行了分析。然后,详细阐述了模组的设计思路和关键技术,包括传感器选型、数据融合算法等。接着,介绍了模组的实现过程和实验结果,通过实际测试验证了模组的性能和可靠性。最后,对未来的研究方向进行了展望。关键词:水下SLAM;定位模组;传感器;数据融合2.引言2.1.研究背
- 无人机技术全解析:从军事靶机到低空经济新引擎
UAV_ckesc
无人机
一、无人机定义与监管体系无人机(UnmannedAerialVehicle,UAV)是指通过无线电遥控设备或自主程序控制装置操纵的无人驾驶飞行器。其核心特征包括:无驾驶舱设计:搭载自动驾驶仪、程序控制装置等设备实现自主飞行分级管理体系:中国民航局将116kg以上无人机及4600m³以上飞艇纳入融合空域管理,微型航拍器由行业协会自治二、百年发展历程1.军事起源阶段(1914-1990)1914年:英
- 【如何在Apollo中利用JSON/XML/config来减少代码量】
勾魂凉皮
jsonxml
Apollo(百度的自动驾驶开源平台)是一个复杂的大型项目,涉及多个模块的协同工作,如感知、规划、控制、定位等。在这样的大型项目中,减少代码量有助于提高代码的可维护性、可读性和开发效率。使用JSON和XML等配置文件,可以将很多与代码逻辑无关的配置和行为控制从代码中分离出来,从而减少代码量和复杂性。以下是一些Apollo中可以应用的策略,来利用JSON/XML配置文件和其他技术来减少代码量和复杂性
- 一个AI应用的开发、上线流程解析
終不似少年遊*
人工智能ai应用ckptonnx模型文件部署推理
目录1.模型文件格式1.1CheckPoint(ckpt)文件格式1.2.pth文件格式1.3.mindir文件格式1.4.onnx文件格式2.推理(Inference)2.1.pth(PyTorch模型格式)2.2.mindir(MindSpore模型格式)2.3.onnx(开放神经网络交换格式)2.4实际例子:自动驾驶系统中的推理模块3.APP与网页4.运维中心与本地部署SDK5.RAG(Re
- 自动驾驶软件:Tesla Autopilot二次开发_18.未来趋势与发展方向
zhubeibei168
电动汽车自动驾驶opencv人工智能电动汽车
18.未来趋势与发展方向未来的自动驾驶技术将不断演进,特斯拉的Autopilot系统作为行业领先的技术,也在不断地进行改进和创新。本节将探讨自动驾驶软件领域的未来趋势与发展方向,包括技术进步、法规变化、市场接受度和用户体验等方面。我们将结合特斯拉Autopilot的最新进展,分析未来可能出现的技术和应用。18.1技术进步18.1.1传感器技术的改进传感器是自动驾驶系统的关键组件,未来的传感器技术将
- 华为 ADS 3.0 与特斯拉 FSD V12:自动驾驶技术的巅峰对决与未来展望
中科宁图
华为自动驾驶人工智能
一、华为ADS3.0:多传感器融合的卓越代表(一)硬件与技术特色华为ADS3.0智能驾驶系统构建了全面的全息感知体系,融合激光雷达、高清摄像头、毫米波雷达、超声波传感器等多种设备。激光雷达实现环境三维重建和精确测距,在恶劣条件下仍能准确捕捉物体信息;高分辨率摄像头获取视觉信息;毫米波雷达在极端天气下强化对移动物体探测;超声波传感器辅助近距离障碍物检测。GOD网络融合处理多传感器数据,为决策提供坚实
- 自动驾驶感知系统配置分析——以“8摄像头+1毫米波雷达+12超声波雷达”为例
空间机器人
自动驾驶人工智能机器学习
自动驾驶感知系统配置分析——以“8摄像头+1毫米波雷达+12超声波雷达”为例1.引言自动驾驶系统依赖于传感器来感知周围环境,并基于此做出实时决策。不同类型的传感器各自有不同的特性,能够应对不同的场景和环境条件。摄像头、毫米波雷达、超声波雷达的组合能够在视觉、距离、速度和障碍物感知等方面提供全面的支持。本章节将详细介绍“8摄像头+1毫米波雷达+12超声波雷达”配置的设计思路、优势、各传感器的参数,以
- AUTOSAR从入门到精通-【自动驾驶】高精地图(三)
格图素书
人工智能算法机器学习
目录前言算法原理高精地图发展历史A.数字地图B.增强型数字地图C.高精地图D.可扩展地图高清地图基础知识TopologicalRepresentationGeometricRepresentationSemanticRepresentationDynamicElementsFeature-BasedMapLayers自动驾驶产业与地图1.1自动驾驶技术1.2地图在自动驾驶中的作用1.3地图的层级1
- 第二章:9.5 多个输出的分类
望云山190
分类数据挖掘人工智能
多标签分类问题多标签分类问题是一种特殊的分类问题,其中每个输入样本可以同时属于多个类别。这与单标签分类问题不同,在单标签分类问题中,每个输入样本只能属于一个类别。例如,在自动驾驶汽车的场景中,一张图像可能同时包含汽车、公交车和行人,因此在这种情况下,每个图像可以有多个相关的标签。构建多标签分类神经网络的方法方法一:独立训练多个神经网络一种方法是将多标签分类问题分解为多个独立的二分类问题。具体来说,
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st