LSD(Line Segment Detector) 直线段检测算法

 LSD的核心是像素合并于误差控制。利用合并像素来检测直线段并不是什么新鲜的方法,但是合并像素的方法通常运算量较大。LSD号称是能在线性时间(linear-time)内得到亚像素级准确度的直线段检测算法。LSD虽然号称不需人工设置任何参数,但是实际使用时,可以设置采样率和判断俩像素是否合并的方向差。我们知道,检测图像中的直线其实就是寻找图像中梯度变化较大的像素。因此,梯度和图像的level-line是LSD提及的两个基本概念。LSD首先计算每一个像素与level-line的夹角以构成一个level-line场。然后,合并这个场里方向近似相同的像素,这样可以得到一系列regions,这些 regions被称为 line support regions。如下图所示。


    每一个line support region其实就是一组像素,它也是直线段(line segment)的候选。同时,对于这个line support region,我们可以观察它的最小外接矩形。直观上来讲,当一组像素构成的区域,特别细长时,那么这组像素更加可能是直线段。基于此,作者还统计了line support region的最小外接矩形的主方向。line support region中的一个像素的level-line 角度与最小外接矩形的主方向的角度差在容忍度(tolerance)2τ内的话,那么这个点被称作"aligned point"。作者统计最小外接矩形内的所有像素数和其内的alinedg points数,用来判定这个line support region是否是一个直线段。判定的准则使用的是“a contrario approach”和“Helmholtz principle”方法。在这里,aligned  points的数量是我们感兴趣的信息。因此作者考虑如下假设:aligned points越多,那么region越可能是直线段。对于一副图像i和一个矩形r,记k(i,r)为aligned points的数量,n(r)为矩形r内的总像素数。那么,我们希望能够看到:

      其中,Ntest是所有要考虑的矩形的数量。PH0是针对 contrario model H0的一个概率。I是在H0模型下的随机图像。在这篇文章中,作者用H0的模型,主要有以下两个属性:

       (1){LLA(j)},其中j是像素,是一由一组随机变量组成;(2)LLA(j)在[0,2π]上均匀分布。

       因此,判断一个像素是不是aligned point可以记作概率:

          p = τ/π

       这样,再通过误差控制,最终的直线段检测算法如下:


     在上述算法中,还有两个要点我们没有解释。一是line support region具体是怎么得到了,二是怎样进行误差控制的。

    前面我们说过,line support region是通过合并方向近似相同的像素得到。其实在这里,这个合并的过程更多的是依赖于区域生长算法。对于一个level-line 场LLA,种子像素P,和容忍度 τ。我们 可以通过简单的区域生长算法来得到line support region,具体的算法过程参考论文里给出的步骤吧。


     至于NFA(the number of false alarms)计算,作者使用如下公式计算:


   其中,N和M是采样过后图像的列和行,B(n,k,p)是一个二项分布。n依旧是矩形内所有像素数,k是矩形内的所有p-aligned point数。此处的p-aligned point是指和矩形的主方向在容忍度pπ下方向相同的像素。如果,那么可以认为结果有效。

         在实际使用作者的源码时,可以调整lsd函数中的scale来调整图像采样率。此外,合并角度代码里默认是22.5度。图像越小,角度越小,得到的结果越少。不过当图像采样不同时,在同一位置可能得到差异特别大的直线段,这个暂时不知道是什么造成的。

       一个比较迷人的结果:

 




LSD:一种直线检测算法简介

原文地址:http://blog.csdn.net/carson2005/article/details/9326847


申明:本文是笔者在阅读了相应的英文文献后,翻译整理所得,原文为:Rafael Grompone von Gioi, LSD: a Line Segment Detector


    LSD是一种直线检测分割算法,它能在线性的时间内得出亚像素级精度的检测结果。该算法被设计成可以在任何数字图像上都无需参数调节。它可以自己控制误检的数量:平均而言,每张图有一个误检。

相关知识介绍

LSD的目标在于检测图像中局部的直的轮廓。这也是我们称之为直线分割的原因。轮廓是图像中的某些特殊区域,在这些区域,图像的灰度从黑到白或者从白到黑的剧烈变化。因此,梯度和level-line是两个重要的感念,如下图所示:











你可能感兴趣的:(直线段检测算法)