用自己的数据,制作python版本的cifar10数据集

前期准备:3通道图片60000张,如果你没有那么大的数据量,需要改变cifar-10-API中的定义,下面会具体说到。
如果你的图片是灰度图(单通道)可以用这种方法来改为三通道:
opencv将灰度图转化为RGB三通道图像
要求为python2.7版本,由于cifar10就是在python2.7下面定义的,用python3版本与2.7版本最主要的不同是在2.7版本中打包模块为cPickle,而在python3中为pickle。在cifar-10-API中打开二进制文件为cPickle。
有任何问题的可以在下方留言,或者邮箱留言:[email protected]

1、将图片转化为32*32的三通道图片

def img_tra():
    for k in range(0,num):
        currentpath=folder+"/"+imglist[k]
        im=Image.open(currentpath)
        #width=im.size[0]
        #height=im.size[1]
        x_s=32
        y_s=32
        out = im.resize((x_s,y_s),Image.ANTIALIAS)
        out.save(folder_ad+"/"+str(imglist[k]))

2、进行进行像素点操作。

python版本的cifar数据集格式为在一个字典中存在batch_label,labels,data,filenames四种信息,其中batch_label与filenames为utf-8编码的字符串,data为uint8编码的numpy数组,labels为utf-8编码的列表。先将条桶图片转化为32*32的RGB图,然后依次读取RGB通道像素值,存入3*1024numpy数组,图片标签存入labels,图片名存入filenames,将其打包成一个二进制文件。
下图是打开官方cifar数据集文件内容(6个文件都一样,以data_batch_1为例)

import cPickle as p
import numpy as np
import chardet
def unpickle(file):
    import cPickle
    with open(file, 'rb') as fo:
        dict = cPickle.load(fo, encoding='latin-1')
    return dict
cc=unpickle("J:/get4/data_atch_1")
print(cc)

打开后为:
用自己的数据,制作python版本的cifar10数据集_第1张图片

用自己的数据,制作python版本的cifar10数据集_第2张图片

我们将点操作与写文件写在一个函数mkcf()函数中:

def mkcf():
    global data
    global list1
    global list2
    global list3
    global list4
    for k in range(0,num):
        currentpath=folder_ad+"/"+imglist[k]
        im=Image.open(currentpath)
        with open(binpath, 'a') as f:
            for i in range (0,32):
                for j in range (0,32):
                    cl=im.getpixel((i,j))
                    #print(imglist[k])
                    #print(type(cl[0]))
                    #with open(binpath, 'a') as f:
                        #print(str(cl[0]))
                    list1.append(cl[0])
                    #print(list1)


            for i in range (0,32):
                for j in range (0,32):
                    cl=im.getpixel((i,j))
                    #with open(binpath, 'a') as f:
                    #mid=str(cl[1])
                    #f.write(mid)
                    list1.append(cl[1])

            for i in range (0,32):
                for j in range (0,32):
                    cl=im.getpixel((i,j))
                    #with open(binpath, 'a') as f:
                    #mid=str(cl[2])
                    #f.write(mid)
                    list1.append(cl[2])
        list2.append(list1)
        list1=[]
        #arr2=np.array(list2)
        #print(arr4)
        f.close()
        print("image"+str(k+1)+"saved.")
        list3.append(imglist[k].encode('utf-8'))
    arr2=np.array(list2,dtype=np.uint8)
    data['batch_label'.encode('utf-8')]='testing batch 1 of 1'.encode('utf-8')
    #addWord(cifar10,"batch_label".encode('utf-8'),'training batch 5 of 5'.encode('utf-8'))
    data.setdefault('labels'.encode('utf-8'),label)
    data.setdefault('data'.encode('utf-8'),arr2)
    #addWord(cifar10,'labels'.encode('utf-8'),label)
    #addWord(cifar10,'data'.encode('utf-8'),arr2)
    data.setdefault('filenames'.encode('utf-8'),list3)
    #addWord(cifar10,'filenames'.encode('utf-8'),list3)
    output = open(binpath, 'wb')
    pickle.dump(data, output)
    output.close()

3、总体代码粘贴如下

# -*- coding: utf-8 -*-
"""
Created on Tue Apr 18 14:17:45 2017

@author: ielij
"""
import numpy as np
from PIL import Image
import operator
from os import listdir
import sys
import cPickle as pickle
import random
data={}
list1=[]
list2=[]
list3=[]
def img_tra():
    for k in range(0,num):
        currentpath=folder+"/"+imglist[k]
        im=Image.open(currentpath)
        #width=im.size[0]
        #height=im.size[1]
        x_s=32
        y_s=32
        out = im.resize((x_s,y_s),Image.ANTIALIAS)
        out.save(folder_ad+"/"+str(imglist[k]))
def addWord(theIndex,word,adder):
    theIndex.setdefault(word,[]).append(adder)
def seplabel(fname):
    filestr=fname.split(".")[0]
    label=int(filestr.split("_")[0])
    return label
def mkcf():
    global data
    global list1
    global list2
    global list3
    for k in range(0,num):
        currentpath=folder_ad+"/"+imglist[k]
        im=Image.open(currentpath)
        with open(binpath, 'a') as f:
            for i in range (0,32):
                for j in range (0,32):
                    cl=im.getpixel((i,j))
                    list1.append(cl[0])
            for i in range (0,32):
                for j in range (0,32):
                    cl=im.getpixel((i,j))
                    #with open(binpath, 'a') as f:
                    #mid=str(cl[1])
                    #f.write(mid)
                    list1.append(cl[1])

            for i in range (0,32):
                for j in range (0,32):
                    cl=im.getpixel((i,j))
                    list1.append(cl[2])
        list2.append(list1)
        list1=[]
        f.close()
        print("image"+str(k+1)+"saved.")
        list3.append(imglist[k].encode('utf-8'))
    arr2=np.array(list2,dtype=np.uint8)
    data['batch_label'.encode('utf-8')]='testing batch 1 of 1'.encode('utf-8')
    data.setdefault('labels'.encode('utf-8'),label)
    data.setdefault('data'.encode('utf-8'),arr2)
    data.setdefault('filenames'.encode('utf-8'),list3)
    output = open(binpath, 'wb')
    pickle.dump(data, output)
    output.close()

folder="H:/VOC2007/test_ad"
folder_ad="H:/VOC2007/test_rs"
imglist=listdir(folder_ad)
num=len(imglist)
img_tra()
label=[]
for i in range (0,num):
    label.append(seplabel(imglist[i]))
binpath="H:/VOC2007/get4/test_batch"
print(binpath)
mkcf()

需要说明一点,图片存储格式为:0_126.jpg,其中0为标签,得到标签的方式为(此函数已在总代码里)

def seplabel(fname):
    filestr=fname.split(".")[0]
    label=int(filestr.split("_")[0])
    return label

4、结果展示

用自己的数据,制作python版本的cifar10数据集_第3张图片

100张精度
用自己的数据,制作python版本的cifar10数据集_第4张图片
1000张精度
用自己的数据,制作python版本的cifar10数据集_第5张图片

注:如果没有那么多数据集,只想换其中一个类,即只替换6000张照片,可以考虑我做的另一个版本(cifar10-置换版本,置换标签为9的类):
http://download.csdn.net/detail/l297969586/9832449

你可能感兴趣的:(python,深度学习)