- mixture_of_depths
道真人
深度学习人工智能
mixture_of_depths是一种用于处理不同深度模型组合的技术或机制,通常用于模型的加载和推理过程中。它涉及将模型的不同层次或深度进行组合或切换,以提高模型的灵活性和性能。mixture_of_depths的具体含义模型组合策略:mixture_of_depths可能涉及在不同的模型深度(即层数)之间进行切换或组合,可能是为了在推理时选择合适的深度,以平衡计算资源和模型性能。这在需要对性能
- paddle nlp 3.0 全面拥抱开源大模型
路人与大师
paddle自然语言处理开源
首先安装神圣的飞桨自然语言处理框架3.0pipinstall--upgradepaddlenlp==3.0.0b0阿里云通义千问(Qwen2)系列大模型介绍阿里云通义千问(Qwen2)是阿里云推出的一系列先进的大型语言模型,涵盖了从轻量级到超大规模的各种模型,包括混合专家模型(Mixture-of-Experts,MoE)。Qwen2系列在多个自然语言处理任务上展现了卓越的性能,并且在一些基准测试
- 高斯混合模型聚类(GMM)matlab实现
唐维康
高斯混合模型聚类
GaussianMixtureModel,就是假设数据服从MixtureGaussianDistribution,换句话说,数据可以看作是从数个GaussianDistribution中生成出来的。实际上,我们在K-means和K-medoids两篇文章中用到的那个例子就是由三个Gaussian分布从随机选取出来的。实际上,从中心极限定理可以看出,Gaussian分布(也叫做正态(Normal)分
- Kmeans、混合高斯模型、EM 算法
dreampai
混合高斯模型(MixturesofGaussians)和EM算法image.pngKmeans与EM算法E步是确定隐含类别变量CM步更新其他参数u(质心)来时J(平方误差)最小化隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估
- VLM 系列——MoE-LLaVa——论文解读
TigerZ*
AIGC算法深度学习人工智能AIGC计算机视觉transformer
一、概述1、是什么moe-Llava是Llava1.5的改进全称《MoE-LLaVA:MixtureofExpertsforLargeVision-LanguageModels》,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答,潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述),未知是否能偶根据图片写代码(HTML、JS、CSS)。支持单幅图片输入(可以作为第一个或第二个
- VLM 系列——LLaVA-MoLE——论文解读
TigerZ*
AIGC算法深度学习人工智能AIGCtransformer计算机视觉
一、概述1、是什么Llava-MoLE是Llava1.5的改进全称《LLaVA-MoLE:SparseMixtureofLoRAExpertsforMitigatingDataConflictsinInstructionFinetuningMLLMs》,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答,潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述),未知是否能偶根据图片
- 基于VCF文件做基因渗入分析(Dsuite)
DumplingLucky
Dsuite软件文章:Malinsky,M.,Matschiner,M.andSvardal,H.(2021)Dsuite‐fastD‐statisticsandrelatedadmixtureevidencefromVCFfiles.MolecularEcologyResources21,584–595.doi:https://doi.org/10.1111/1755-0998.132651.软
- MoE-LLaVA: Mixture of Experts for Large Vision-Language Models
UnknownBody
LLM语言模型人工智能
本文是LLM系列文章,针对《MoE-LLaVA:MixtureofExpertsforLargeVision-LanguageModels》的翻译。MoE-LLaVA:大型视觉语言模型的专家混合摘要1引言2相关工作3方法4实验5结论和未来方向摘要对于大型视觉语言模型(LVLM),缩放模型可以有效地提高性能。然而,扩展模型参数显著增加了训练和推理成本,因为计算中的每个token都激活了所有模型参数。
- 51-11 多模态论文串讲—VLMo 论文精读
深圳季连AIgraphX
AutoGPT自动驾驶大模型自动驾驶transformergpt-3智慧城市迁移学习算法
VLMo:UnifiedVision-LanguagePre-TrainingwithMixture-of-Modality-Experts(NeurIPS2022)VLMo是一种多模态Transformer模型,从名字可以看得出来它是一种Mixture-of-Modality-Experts(MoME),即混合多模态专家。怎么理解呢?主流VLP模型分为两种,一种是双塔结构(DualEncoder
- STM32+WIFI+Django+MySQL+BIM实现数字孪生环境控制系统
爱吃糖的猫
python前端单片机djangostm32python
本文节选自我的博客:水果冷库环境控制系统作者简介:大家好,我是MilesChen,偏前端的全栈开发者。CSDN主页:爱吃糖的猫我的博客:爱吃糖的猫Github主页:MilesChen支持我:点赞+收藏⭐️+留言介绍:ThemixtureofWEB+DeepLearning+Iot+anything简介水果冷库环境控制系统是基于物联网、WEB、BIM的背景下实现对大型果品冷藏库无线监测与控制。传感器
- Nous Hermes 2:超越Mixtral 8x7B的MOE模型新高度
努力犯错
语言模型AI编程
引言随着人工智能技术的迅猛发展,开源大模型在近几年成为了AI领域的热点。最近,NousResearch公司发布了其基于Mixtral8x7B开发的新型大模型——NousHermes2,这一模型在多项基准测试中超越了Mixtral8x7BInstruct,标志着MOE(MixtureofExperts,专家混合模型)技术的新突破。Huggingface模型下载:https://huggingface
- GPT-3被超越?解读低能耗、高性能的GlaM模型
NLP论文解读
©原创作者|LJGLaM:EfficientScalingofLanguageModelswithMixture-of-Expertshttps://arxiv.org/pdf/2112.06905.pdf01摘要这是上个月谷歌刚刚在arxiv发布的论文,证明了一种能scaleGPT-3但又比较节省耗能的架构。GPT-3自问世以来在多项自然语言处理的任务上都有超强的表现。但是训练GPT-3这样庞大
- 经济学人每天5分钟10个单词 第七天
LongLongName
1.sulphurn.硫磺;硫v.使硫化;用硫磺处理;在...中加硫磺单词形态:形容词:sulphurousexamples:Gunpowderisamixtureofsulfhur,saltpeterandcharcoal.2.indicesn.目录,指数examples:Thissoftwarecanautomaticallygenerateindicesforarticles.3.robbe
- PBM模型学习(三)模型设置
Guanghui Yu
PBM模型学习学习CFDPBM模型
模型设置以气液为例标准ke模型,标准壁面函数PBM模型只能在mixture或者eulerian多相流模型中打开。设置液态水water为主相,空气为次相设置主次相的原则:主相为流体连续相,次相为气泡或者颗粒。Phenomenas现象设置:勾选AggregationKernel和BreakageKernel注意:只能在多相流模型打开前提下,才能进行操作对于多相流参考以下设置,一般操作密度设置为密度较小
- AI通用大模型 —— Pathways,MoE, etc.
人生简洁之道
DLLLMGeneralAI人工智能机器学习深度学习
文章目录Pathways现有AI缺憾PathwaysCanDoMultipleTasksMultipleSensesSparseandEfficientMixtureofExperts(MoE)NeuralComputation'1991,AdaptivemixturesoflocalexpertsICLR'17,OutrageouslyLargeNeuralNetworks:TheSparsel
- 快速玩转 Mixtral 8x7B MOE大模型!阿里云机器学习 PAI 推出最佳实践
阿里云大数据AI技术
阿里云机器学习云计算
作者:熊兮、贺弘、临在Mixtral8x7B大模型是MixtralAI推出的基于decoder-only架构的稀疏专家混合网络(Mixture-Of-Experts,MOE)开源大语言模型。这一模型具有46.7B的总参数量,对于每个token,路由器网络选择八组专家网络中的两组进行处理,并且将其输出累加组合,在增加模型参数总量的同时,优化了模型推理的成本。在大多数基准测试中,Mixtral8x7B
- 突破界限:首个国产DeepSeek MoE的高效表现
努力犯错
人工智能语言模型自然语言处理chatgptstablediffusion
前言在人工智能技术的快速发展过程中,国产首个开源MoE(MixtureofExperts)大模型——DeepSeekMoE的推出,不仅标志着中国在全球AI领域的重大突破,而且在计算效率和模型性能上展现了显著的优势。这款160亿参数的模型在保持与国际知名Llama2-7B模型相媲美的性能的同时,实现了显著的计算效率提升,计算量仅为对手的40%。模型特性与技术创新DeepSeekMoE模型的核心优势在
- DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models
步子哥
语言模型人工智能自然语言处理
Q:这篇论文试图解决什么问题?A:这篇论文旨在解决大型语言模型(LLMs)在扩展参数规模时面临的计算成本问题。具体来说,它提出了一种名为DeepSeekMoE的新型Mixture-of-Experts(MoE)架构,以实现专家的终极专业化。MoE架构通过将模型分解为多个专家,每个专家专注于特定任务,从而在保持参数规模的同时降低计算成本。然而,现有的MoE架构在确保专家专业化方面面临挑战,即每个专家
- 十分钟读完「超越GPT-3.5和LLama2的Mixtral 8x7B」论文
夕小瑶
自然语言处理人工智能神经网络深度学习大模型nlp
超越GPT-3.5和LLama2!专家混合模型Mixtral8x7B颠覆性表现震撼全球引言:Mixtral8x7B模型及其在多个基准测试中的表现在当今人工智能领域,语言模型的发展正以惊人的速度推进着自然语言处理技术的边界。最近,一个名为Mixtral8x7B的模型引起了广泛关注,它是一种基于稀疏混合专家(SparseMixtureofExperts,SMoE)的语言模型,以其在多个基准测试中的卓越
- sample 算子_Halcon算子解释 - osc_poeqd6cw的个人空间 - OSCHINA - 中文开源技术交流社区...
weixin_39791322
sample算子
Halcon算子解释大全Halcon/Visionpro视频教程和资料,请访问重码网,网址:http://www.211code.comChapter1:Classification1.1Gaussian-Mixture-Models1.add_sample_class_gmm功能:把一个训练样本添加到一个高斯混合模型的训练数据上。2.classify_class_gmm功能:通过一个高斯混合模型
- HALCON算子函数总结(上)
逆风路途
视觉
HALCON算子函数总结(上)**HALCON算子函数——Chapter1:Classification**Chapter_1_:Classification1.1Gaussian-Mixture-Models1.add_sample_class_gmm功能:把一个训练样本添加到一个高斯混合模型的训练数据上。2.classify_class_gmm功能:通过一个高斯混合模型来计算一个特征矢量的类。
- 不是 GPT4 用不起,而是本地运行 Mixtral-8x7B 更有性价比
xiangzhihong8
大数据与人工智能神经网络人工智能
当GPT4刚问世时,社区猜测它用了“多少亿个参数”才实现的如此惊人的性能。但事实证明,GPT4的创新不仅仅是“更多参数”。它本质上是8个GPT3.5模型一起工作。这些模型中的每一个都针对不同的任务(即“专家”)进行了调整。这称为“专家组合”(MixtureofExperts,缩写为MoE)。输入文本根据内容和所需任务会被分派给8个专家模型中的一个。然后,小组中的其他专家模型会评估结果,从而改进未来
- Mixtral 8X7B MoE模型基于阿里云人工智能平台PAI实践合集
阿里云大数据AI技术
阿里云人工智能云计算
作者:熊兮、贺弘、临在Mixtral8x7B大模型是MixtralAI推出的基于decoder-only架构的稀疏专家混合网络(Mixture-Of-Experts,MOE)开源大语言模型。这一模型具有46.7B的总参数量,对于每个token,路由器网络选择八组专家网络中的两组进行处理,并且将其输出累加组合,在增加模型参数总量的同时,优化了模型推理的成本。在大多数基准测试中,Mixtral8x7B
- 用通俗易懂的方式讲解大模型分布式训练并行技术:MOE并行
Python算法实战
大模型理论与实战大模型分布式langchain大模型多模态大语言模型大模型训练大模型部署
前面的文章中讲述了数据并行、流水线并行、张量并行、序列并行、自动并行等多种并行技术。但现在的模型越来越大,训练样本越来越多,每个样本都需要经过模型的全部计算,这就导致了训练成本的平方级增长。而当我们希望在牺牲极少的计算效率的情况下,把模型规模提升上百倍、千倍,通常就需要使用MOE(Mixture-of-Experts)并行。因此,本文接下来给大家分享MOE并行。码字不易,如果觉得我的文章能够能够给
- MoE模型性能还能更上一层楼?一次QLoRA微调实践
Baihai IDP
技术干货白海科技人工智能深度学习LLMAIMoE自然语言处理
Fine-TuningMixtral8x7BwithQLoRA:EnhancingModelPerformance编者按:最近,混合专家(MixtureofExperts,MoE)这种模型设计策略展现出了卓越的语言理解能力,如何在此基础上进一步提升MoE模型的性能成为业界热点。本文作者使用一种名为QLoRA的方法,通过量化和LoRA技术对MoE模型Mixtral-8x7B进行微调,以期大幅提高其性
- 使用PyTorch实现混合专家(MoE)模型
deephub
pytorch人工智能python深度学习混合专家模型
Mixtral8x7B的推出在开放AI领域引发了广泛关注,特别是混合专家(Mixture-of-Experts:MoEs)这一概念被大家所认知。混合专家(MoE)概念是协作智能的象征,体现了“整体大于部分之和”的说法。MoE模型汇集了各种专家模型的优势,以提供更好的预测。它是围绕一个门控网络和一组专家网络构建的,每个专家网络都擅长特定任务的不同方面在本文中,我将使用Pytorch来实现一个MoE模
- 论文系列之-Mixtral of Experts
Takoony
transformer深度学习人工智能
Q:这篇论文试图解决什么问题?A:这篇论文介绍了Mixtral8x7B,这是一个稀疏混合专家(SparseMixtureofExperts,SMoE)语言模型。它试图解决的主要问题包括:1.提高模型性能:通过使用稀疏混合专家结构,Mixtral在多个基准测试中超越或匹配了现有的大型模型(如Llama270B和GPT-3.5),尤其是在数学、代码生成和多语言理解任务上。2.控制计算成本:尽管模型拥有
- 系统性介绍MoE模型架构,以及在如今大模型方向的发展现状
zenRRan
知乎:Verlocksss编辑:马景锐链接:https://zhuanlan.zhihu.com/p/6752162811学习动机第一次了解到MoE(Mixtureofexperts),是在GPT-4模型架构泄漏事件,听说GPT-4的架构是8个GPT-3级别大小的模型以MoE架构(8*220B)组合成一个万亿参数级别的模型。不过在这之后开源社区并没有对MoE架构进行很多的探索,更多的工作还是聚焦在
- 超详细EM算法举例及推导
老实人小李
聚类算法聚类
最好先学习一下极大似然EM(Expectation-Maximum)算法也称期望最大化算法,曾入选“数据挖掘十大算法”中,可见EM算法在机器学习、数据挖掘中的影响力。EM算法是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussianmixturemodel,简称GMM)的参数;隐式马尔科夫算法(HMM)、LDA主题模型的变分推断等等。EM算法是一种迭代优
- 【数据不完整?用EM算法填补缺失】期望值最大化 EM 算法:睹始知终
Debroon
算法
期望值最大化算法EM:睹始知终算法思想算法推导算法流程E步骤:期望M步骤:最大化陷入局部最优的原因算法应用高斯混合模型(GaussianMixtureModel,GMM)问题描述输入输出Python代码实现算法思想期望值最大化方法,是宇宙演变、物种进化背后的动力。如果一个公司在制定年终奖标准时,把每个员工一半的奖金和公司价值观挂钩,人们就会背诵创始人每个语录—整个公司都会自动迭代寻找最优解,每个人
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l