加载本地cifar10 数据集

import tensorflow as tf
import numpy as np
import math
from six.moves import cPickle as pickle
import os
import platform
from subprocess import check_output
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
def load_pickle(f):
    version = platform.python_version_tuple()
    if version[0] == '2':
        return  pickle.load(f)
    elif version[0] == '3':
        return  pickle.load(f, encoding='latin1')
    raise ValueError("invalid python version: {}".format(version))

def load_CIFAR_batch(filename):
    """ load single batch of cifar """
    with open(filename, 'rb') as f:
        datadict = load_pickle(f)
        X = datadict['data']
        Y = datadict['labels']
        X = X.reshape(10000,3072)
        Y = np.array(Y)
        return X, Y

def load_CIFAR10(ROOT):
    """ load all of cifar """
    xs = []
    ys = []
    for b in range(1,6):
        f = os.path.join(ROOT, 'data_batch_%d' % (b, ))
        X, Y = load_CIFAR_batch(f)
        xs.append(X)
        ys.append(Y)
    Xtr = np.concatenate(xs)
    Ytr = np.concatenate(ys)
    del X, Y
    Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch'))
    return Xtr, Ytr, Xte, Yte
    
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=10000):
    # Load the raw CIFAR-10 data
    cifar10_dir = '../input/cifar-10-batches-py/'
    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

    # Subsample the data
    mask = range(num_training, num_training + num_validation)
    X_val = X_train[mask]
    y_val = y_train[mask]
    mask = range(num_training)
    X_train = X_train[mask]
    y_train = y_train[mask]
    mask = range(num_test)
    X_test = X_test[mask]
    y_test = y_test[mask]

    x_train = X_train.astype('float32')
    x_test = X_test.astype('float32')

    x_train /= 255
    x_test /= 255

    return x_train, y_train, X_val, y_val, x_test, y_test


# Invoke the above function to get our data.
x_train, y_train, x_val, y_val, x_test, y_test = get_CIFAR10_data()


print('Train data shape: ', x_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', x_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', x_test.shape)
print('Test labels shape: ', y_test.shape)

参考:

  1. data_utils;
  2. stackoverflow;

你可能感兴趣的:(深度学习)