Tensorflow1.0空间变换网络(SpatialTransformer Networks)实现

空间变换网络简单介绍:

Tensorflow1.0空间变换网络(SpatialTransformer Networks)实现_第1张图片

  1. 通过locatnet,提取输入图像的theta(将用于仿射变换);
  2. 根据输入图像的width和height以及仿射变换(或者TPS)的参数theta,可以生成目标位置在输入图像(U)中对应的位置(与输入图像位置一直的目标索引); 
    (由torch.bmm, Batch matrix matrix product of matrices生成)。
  3. 根据目标在输入图像中的对应位置(索引矩阵)利用双线性插值得到目标输出。
好不容易找到一个Tensorflow实现的github项目,发现是Tensorflow0.7的,所以自然而然的有了坑,憋了一晚上,终于找到了坑,而且顺利填坑,

先给大家展示一下效果:

Tensorflow1.0空间变换网络(SpatialTransformer Networks)实现_第2张图片Tensorflow1.0空间变换网络(SpatialTransformer Networks)实现_第3张图片

代码部分:

import tensorflow as tf


def transformer(U, theta, out_size, name='SpatialTransformer', **kwargs):
    print('beigin-transformer')
  
    
    def _repeat(x, n_repeats):
        with tf.variable_scope('_repeat'):
            rep = tf.transpose(
                tf.expand_dims(tf.ones(shape=tf.stack([n_repeats, ])), 1), [1, 0])
            rep = tf.cast(rep, 'int32')
            x = tf.matmul(tf.reshape(x, (-1, 1)), rep)
            return tf.reshape(x, [-1])

    def _interpolate(im, x, y, out_size):
        with tf.variable_scope('_interpolate'):
            # constants
            num_batch = tf.shape(im)[0]
            height = tf.shape(im)[1]
            width = tf.shape(im)[2]
            channels = tf.shape(im)[3]

            x = tf.cast(x, 'float32')
            y = tf.cast(y, 'float32')
            height_f = tf.cast(height, 'float32')
            width_f = tf.cast(width, 'float32')
            out_height = out_size[0]
            out_width = out_size[1]
            zero = tf.zeros([], dtype='int32')
            max_y = tf.cast(tf.shape(im)[1] - 1, 'int32')
            max_x = tf.cast(tf.shape(im)[2] - 1, 'int32')

            # scale indices from [-1, 1] to [0, width/height]
            x = (x + 1.0)*(width_f) / 2.0
            y = (y + 1.0)*(height_f) / 2.0

            # do sampling
            x0 = tf.cast(tf.floor(x), 'int32')
            x1 = x0 + 1
            y0 = tf.cast(tf.floor(y), 'int32')
            y1 = y0 + 1

            x0 = tf.clip_by_value(x0, zero, max_x)
            x1 = tf.clip_by_value(x1, zero, max_x)
            y0 = tf.clip_by_value(y0, zero, max_y)
            y1 = tf.clip_by_value(y1, zero, max_y)
            dim2 = width
            dim1 = width*height
            base = _repeat(tf.range(num_batch)*dim1, out_height*out_width)
            base_y0 = base + y0*dim2
            base_y1 = base + y1*dim2
            idx_a = base_y0 + x0
            idx_b = base_y1 + x0
            idx_c = base_y0 + x1
            idx_d = base_y1 + x1

            # use indices to lookup pixels in the flat image and restore
            # channels dim
            im_flat = tf.reshape(im, tf.stack([-1, channels]))
            im_flat = tf.cast(im_flat, 'float32')
            Ia = tf.gather(im_flat, idx_a)
            Ib = tf.gather(im_flat, idx_b)
            Ic = tf.gather(im_flat, idx_c)
            Id = tf.gather(im_flat, idx_d)

            # and finally calculate interpolated values
            x0_f = tf.cast(x0, 'float32')
            x1_f = tf.cast(x1, 'float32')
            y0_f = tf.cast(y0, 'float32')
            y1_f = tf.cast(y1, 'float32')
            wa = tf.expand_dims(((x1_f-x) * (y1_f-y)), 1)
            wb = tf.expand_dims(((x1_f-x) * (y-y0_f)), 1)
            wc = tf.expand_dims(((x-x0_f) * (y1_f-y)), 1)
            wd = tf.expand_dims(((x-x0_f) * (y-y0_f)), 1)
            output = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id])
            return output

    def _meshgrid(height, width):
        print('begin--meshgrid')
        with tf.variable_scope('_meshgrid'):
            # This should be equivalent to:
            #  x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
            #                         np.linspace(-1, 1, height))
            #  ones = np.ones(np.prod(x_t.shape))
            #  grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
            
            x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])),
                            tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0]))
            print('meshgrid_x_t_ok')
            y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1),
                            tf.ones(shape=tf.stack([1, width])))
            print('meshgrid_y_t_ok')
            x_t_flat = tf.reshape(x_t, (1, -1))
            y_t_flat = tf.reshape(y_t, (1, -1))
            print('meshgrid_flat_t_ok')
            ones = tf.ones_like(x_t_flat)
            print('meshgrid_ones_ok')
            print(x_t_flat)
            print(y_t_flat)
            print(ones)
            
            grid = tf.concat( [x_t_flat, y_t_flat, ones],0)
            print ('over_meshgrid')
            return grid

    def _transform(theta, input_dim, out_size):
        print('_transform')
        
        with tf.variable_scope('_transform'):
            num_batch = tf.shape(input_dim)[0]
            height = tf.shape(input_dim)[1]
            width = tf.shape(input_dim)[2]
            num_channels = tf.shape(input_dim)[3]
            theta = tf.reshape(theta, (-1, 2, 3))
            theta = tf.cast(theta, 'float32')

            # grid of (x_t, y_t, 1), eq (1) in ref [1]
            height_f = tf.cast(height, 'float32')
            width_f = tf.cast(width, 'float32')
            out_height = out_size[0]
            out_width = out_size[1]
            grid = _meshgrid(out_height, out_width)
            grid = tf.expand_dims(grid, 0)
            grid = tf.reshape(grid, [-1])
            grid = tf.tile(grid, tf.stack([num_batch]))
            grid = tf.reshape(grid, tf.stack([num_batch, 3, -1]))
            #tf.batch_matrix_diag
            # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
            print('begin--batch--matmul')
            T_g = tf.matmul(theta, grid)
            x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1])
            y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1])
            x_s_flat = tf.reshape(x_s, [-1])
            y_s_flat = tf.reshape(y_s, [-1])

            input_transformed = _interpolate(
                input_dim, x_s_flat, y_s_flat,
                out_size)

            output = tf.reshape(
                input_transformed, tf.stack([num_batch, out_height, out_width, num_channels]))
            print('over_transformer')
            return output

    with tf.variable_scope(name):
        output = _transform(theta, U, out_size)
        return output


def batch_transformer(U, thetas, out_size, name='BatchSpatialTransformer'):

    with tf.variable_scope(name):
        num_batch, num_transforms = map(int, thetas.get_shape().as_list()[:2])
        indices = [[i]*num_transforms for i in xrange(num_batch)]
        input_repeated = tf.gather(U, tf.reshape(indices, [-1]))
        return transformer(input_repeated, thetas, out_size)
Demo代码如下:

from scipy import ndimage
import tensorflow as tf
from STN_tf_01 import transformer
import numpy as np
import matplotlib.pyplot as plt
import cv2
im=ndimage.imread('C:\\Users\\hasee\\Desktop\\cat.jpg')
im=im/255.
#im=tf.reshape(im, [1,1200,1600,3])

im=im.reshape(1,1200,1600,3)

im=im.astype('float32')
print('img-over')
out_size=(600,800)
batch=np.append(im,im,axis=0)
batch=np.append(batch,im,axis=0)
num_batch=3

x=tf.placeholder(tf.float32,[None,1200,1600,3])
x=tf.cast(batch,'float32')
print('begin---')
with tf.variable_scope('spatial_transformer_0'):
    n_fc=6
    w_fc1=tf.Variable(tf.Variable(tf.zeros([1200*1600*3,n_fc]),name='W_fc1'))
    initial=np.array([[0.5,0,0],[0,0.5,0]])
    initial=initial.astype('float32')
    initial=initial.flatten()
    
    
    b_fc1=tf.Variable(initial_value=initial,name='b_fc1')
    
    
    h_fc1=tf.matmul(tf.zeros([num_batch,1200*1600*3]),w_fc1)+b_fc1
    
    print(x,h_fc1,out_size)

    h_trans=transformer(x,h_fc1,out_size)
 
    
sess=tf.Session()
sess.run(tf.global_variables_initializer())
y=sess.run(h_trans,feed_dict={x:batch})
plt.imshow(y[0])
plt.show()



你可能感兴趣的:(Tensorflow1.0空间变换网络(SpatialTransformer Networks)实现)