【评估指标选择参考】cross_val_score中scoring参数可选指标

For the most common use cases, you can designate a scorer object with the scoring parameter; the table below shows all possible values. All scorer objects follow the convention that higher return values are better than lower return values. Thus metrics which measure the distance between the model and the data, like metrics.mean_squared_error, are available as neg_mean_squared_error which return the negated value of the metric.
对于最常见的用例,你可以使用scoring参数指定一个分数衡量指标。 下表显示了所有可能的值。 所有分数衡量指标均遵循以下约定:较高的返回值比较低的返回值更好。 因此,用于度量模型预测值与真实数据值之间误差的度量(如metrics.mean_squared_error)使用neg_mean_squared_error,该度量返回度量的取相反数(去相反数就是为了遵守上述约定)。

具体选择参考官方文档:

sklearn官方关于scoring参数的文档

你可能感兴趣的:(评估指标mod)