【Robust学习笔记】Data-Driven Chance Constrained Programs over Wasserstein Balls

数据驱动下的机会约束优化

考虑下列形式的分布鲁棒优化问题:
min ⁡ x ∈ X c T x s.t. P [ ξ ~ ∈ S ( x ) ] ≥ 1 − ϵ ,    ∀ P ∈ F ( θ ) (1) \begin{aligned} \mathop{\min}\limits_{\boldsymbol{x}\in\mathcal{X}} &\quad \boldsymbol{c}^T\boldsymbol{x} \\ \text{s.t.} &\quad \mathbb{P}\left[\tilde{\boldsymbol{\xi}}\in\mathcal{S}(\boldsymbol{x})\right] \ge 1-\epsilon, \; \forall \mathbb{P}\in\mathcal{F}(\theta) \tag{1} \end{aligned} xXmins.t.cTxP[ξ~S(x)]1ϵ,PF(θ)(1) 其中 X ∈ R L \mathcal{X}\in\mathbb{R}^L XRL 是一个紧多面体, S ( x ) ⊆ R K \mathcal{S}(\boldsymbol{x})\subseteq\mathbb{R}^K S(x)RK 是一个决策相关安全集( decision-dependent safety set) , F ( θ ) \mathcal{F}(\theta) F(θ) 是以 P ^ \hat{\mathbb{P}} P^ 为中心、 θ \theta θ 为半径的 Wasserstein Ball。这里 P ^ \hat{\mathbb{P}} P^ 是一组训练数据 { ξ ^ i } i ∈ [ N ] \left\{\hat{\boldsymbol{\xi}}_i\right\}_{i\in[N]} {ξ^i}i[N] 的经验分布。

Wasserstein球的不确定度量化(Uncertainty Quantification)

假设 S ⊆ R K \mathcal{S}\subseteq\mathbb{R}^K SRK,记 S ˉ = R K ∖ S \bar{\mathcal{S}}=\mathbb{R}^K\setminus\mathcal{S} Sˉ=RKS 为它的闭补集。考虑下面的不确定度量问题:
sup ⁡ P ∈ F ( θ ) P [ ξ ~ ∉ S ] . \mathop{\sup}\limits_{\mathbb{P}\in\mathcal{F}(\theta)} \mathbb{P}\left[\tilde{\boldsymbol{\xi}}\notin\mathcal{S}\right]. PF(θ)supP[ξ~/S]. 这里都假设 θ > 0 , ϵ ∈ ( 0 , 1 ) \theta>0,\epsilon\in(0,1) θ>0,ϵ(0,1)

记号
(1) 记 dist ( ξ ^ i , S ˉ ) \text{dist}\left(\hat{\boldsymbol{\xi}}_i, \bar{\mathcal{S}}\right) dist(ξ^i,Sˉ) P ^ \hat{\mathbb{P}} P^ 对应的第 i i i 个数据点和不安全集 S ˉ \bar{\mathcal{S}} Sˉ 之间的距离,这里的距离是基于某个范数 ∥ ⋅ ∥ \lVert\cdot\rVert 。我们对样本数据集进行排序,使其满足
dist ( ξ ^ i , S ˉ ) ≤ dist ( ξ ^ j , S ˉ ) , ∀ 1 ≤ i ≤ j ≤ N \text{dist}\left(\hat{\boldsymbol{\xi}}_i, \bar{\mathcal{S}}\right) \leq \text{dist}\left(\hat{\boldsymbol{\xi}}_j, \bar{\mathcal{S}}\right), \quad \forall 1\leq i\leq j\leq N dist(ξ^i,Sˉ)dist(ξ^j,Sˉ),1ijN (2) 假设 dist ( ξ ^ i , S ˉ ) = 0 \text{dist}\left(\hat{\boldsymbol{\xi}}_i, \bar{\mathcal{S}}\right) =0 dist(ξ^i,Sˉ)=0 当且仅当 i ∈ [ I ] i\in[I] i[I], 这里 I I I 可以为0。
(3) 记 ξ i ∗ ∈ S ˉ \boldsymbol{\xi}_i^*\in\bar{\mathcal{S}} ξiSˉ 为距离 ξ ^ i \hat{\boldsymbol{\xi}}_i ξ^i 最近的不安全点。

定理. (Blanchet and Murthy 2016, Gao and Kleywegt 2016)
j ∗ = max ⁡ { j ∈ [ N ] ∪ { 0 }    ∣    ∑ i = 1 j dist ( ξ ^ i , S ˉ ) ≤ θ N } j^*=\max\left\{ j\in[N]\cup\{0\} \;\big|\; \mathop{\sum}\limits_{i=1}^j \text{dist}\left(\hat{\boldsymbol{\xi}}_i, \bar{\mathcal{S}}\right) \leq \theta N \right\} j=max{j[N]{0}i=1jdist(ξ^i,Sˉ)θN}. 则上述不确定度量问题可以由下面给出的最差情形分布 P ∗ ∈ F ( θ ) \mathbb{P}^*\in\mathcal{F}(\theta) PF(θ) 来求解:
(1) 如果 j ∗ = N j^*=N j=N,则 sup ⁡ P ∈ F ( θ ) P [ ξ ~ ∉ S ] = P ∗ [ ξ ~ ∉ S ] = 1 \mathop{\sup}\limits_{\mathbb{P}\in\mathcal{F}(\theta)} \mathbb{P}\left[\tilde{\boldsymbol{\xi}}\notin\mathcal{S}\right] = \mathbb{P}^*\left[\tilde{\boldsymbol{\xi}}\notin\mathcal{S}\right]=1 PF(θ)supP[ξ~/S]=P[ξ~/S]=1,其中
P ∗ = 1 N ∑ i = 1 I δ ξ ^ i + 1 N ∑ i = I + 1 N δ ξ i ∗ \mathbb{P}^* = \frac{1}{N}\mathop{\sum}\limits_{i=1}^I\delta_{\hat{\boldsymbol{\xi}}_i} + \frac{1}{N}\mathop{\sum}\limits_{i=I+1}^N\delta_{\boldsymbol{\xi}^*_i} P=N1i=1Iδξ^i+N1i=I+1Nδξi
(2) 如果 j ∗ < N j^*j<N,则 sup ⁡ P ∈ F ( θ ) P [ ξ ~ ∉ S ] = P ∗ [ ξ ~ ∉ S ] = j ∗ + p ∗ N \mathop{\sup}\limits_{\mathbb{P}\in\mathcal{F}(\theta)} \mathbb{P}\left[\tilde{\boldsymbol{\xi}}\notin\mathcal{S}\right] = \mathbb{P}^*\left[\tilde{\boldsymbol{\xi}}\notin\mathcal{S}\right]=\frac{j^*+p^*}{N} PF(θ)supP[ξ~/S]=P[ξ~/S]=Nj+p,其中 P ∗ = 1 N ∑ i = 1 I δ ξ ^ i + 1 N ∑ i = I + 1 j ∗ δ ξ i ∗ + p ∗ N δ ξ j + 1 ∗ + + 1 − p ∗ N δ ξ ^ j + 1 + 1 N ∑ i = j ∗ + 2 N δ ξ i ∗ , \mathbb{P}^* = \frac{1}{N}\mathop{\sum}\limits_{i=1}^I\delta_{\hat{\boldsymbol{\xi}}_i} + \frac{1}{N}\mathop{\sum}\limits_{i=I+1}^{j^*}\delta_{\boldsymbol{\xi}^*_i} + \frac{p^*}{N}\delta_{\boldsymbol{\xi}^*_{j+1}} + + \frac{1-p^*}{N}\delta_{\hat{\boldsymbol{\xi}}_{j+1}} + \frac{1}{N}\mathop{\sum}\limits_{i=j^*+2}^N\delta_{\boldsymbol{\xi}^*_i}, P=N1i=1Iδξ^i+N1i=I+1jδξi+Npδξj+1++N1pδξ^j+1+N1i=j+2Nδξi, p ∗ = θ N − ∑ i = 1 j ∗ dist ( ξ ^ i , S ˉ ) dist ( ξ ^ j ∗ + 1 , S ˉ ) p^*=\frac{\theta N-\mathop{\sum}\limits_{i=1}^{j^*}\text{dist}\left(\hat{\boldsymbol{\xi}}_i, \bar{\mathcal{S}}\right)}{\text{dist}\left(\hat{\boldsymbol{\xi}}_{j^*+1}, \bar{\mathcal{S}}\right)} p=dist(ξ^j+1,Sˉ)θNi=1jdist(ξ^i,Sˉ).
【Robust学习笔记】Data-Driven Chance Constrained Programs over Wasserstein Balls_第1张图片

一般机会约束的Reformulation

对任何给定的决策变量 x ∈ X \boldsymbol{x}\in\mathcal{X} xX,存在 [ N ] [N] [N]的一个置换 π ( x ) \pi(\boldsymbol{x}) π(x),使得
dist ( ξ ^ π 1 ( x ) , S ˉ ( x ) ) ≤ dist ( ξ ^ π 2 ( x ) , S ˉ ( x ) ) ≤ ⋯ dist ( ξ ^ π N ( x ) , S ˉ ( x ) ) \text{dist}\left(\hat{\boldsymbol{\xi}}_{\pi_1(\boldsymbol{x})}, \bar{\mathcal{S}}(\boldsymbol{x})\right) \leq \text{dist}\left(\hat{\boldsymbol{\xi}}_{\pi_2(\boldsymbol{x})}, \bar{\mathcal{S}}(\boldsymbol{x})\right) \leq \cdots \text{dist}\left(\hat{\boldsymbol{\xi}}_{\pi_N(\boldsymbol{x})}, \bar{\mathcal{S}}(\boldsymbol{x})\right) dist(ξ^π1(x),Sˉ(x))dist(ξ^π2(x),Sˉ(x))dist(ξ^πN(x),Sˉ(x))
定理. 对任何给定的决策变量 x ∈ X \boldsymbol{x}\in\mathcal{X} xX,模糊机会约束问题 (1) 等价于下面的确定性不等式: 1 N ∑ i = 1 ϵ N dist ( ξ ^ π i ( x ) , S ˉ ( x ) ) ≥ θ . \frac{1}{N}\mathop{\sum}\limits_{i=1}^{\epsilon N} \text{dist}\left(\hat{\boldsymbol{\xi}}_{\pi_i(\boldsymbol{x})}, \bar{\mathcal{S}}(\boldsymbol{x})\right) \ge \theta. N1i=1ϵNdist(ξ^πi(x),Sˉ(x))θ.
进一步,利用线性对偶,可以证明:
定理. 模糊机会约束问题 (1) 等价于:
min ⁡ s , t , x c T x s.t. ϵ N t − e T s ≥ θ N dist ( ξ ^ i , S ˉ ( x ) ) ≥ t − s i , ∀ i ∈ [ N ] s ≥ 0 , x ∈ X . \begin{aligned} \mathop{\min}\limits_{\boldsymbol{s},t,\boldsymbol{x}} &\quad \boldsymbol{c}^T\boldsymbol{x} \\ \text{s.t.} &\quad \epsilon Nt - \boldsymbol{e}^T\boldsymbol{s} \ge \theta N \\ &\quad \text{dist}\left(\hat{\boldsymbol{\xi}}_i, \bar{\mathcal{S}}(\boldsymbol{x})\right) \ge t-s_i, \quad \forall i\in[N] \\ &\quad \boldsymbol{s}\ge\boldsymbol{0},\boldsymbol{x}\in\mathcal{X}. \end{aligned} s,t,xmins.t.cTxϵNteTsθNdist(ξ^i,Sˉ(x))tsi,i[N]s0,xX.

单个机会约束的Reformulation

命题. 假设对所有 x ∈ X \boldsymbol{x}\in\mathcal{X} xX A T x ≠ b \boldsymbol{A}^T\boldsymbol{x}\neq\boldsymbol{b} ATx=b。对于安全集 S ( x ) = { ξ ∈ R K    ∣    ( A ξ + a ) T x < b T ξ + b } \mathcal{S}(\boldsymbol{x}) = \{ \boldsymbol{\xi}\in\mathbb{R}^K \;|\; (\boldsymbol{A\xi+a})^T\boldsymbol{x} < \boldsymbol{b}^T\boldsymbol{\xi} + b \} S(x)={ξRK(Aξ+a)Tx<bTξ+b}。问题 (1) 等价于:
Z I C C ∗ = min ⁡ q , s , t , x c T x s.t. ϵ N t − e T s ≥ θ N ∥ b − A T x ∥ ∗ ( b − A T x ) T ξ ^ i + b − a T x + M q i ≥ t − s i , ∀ i ∈ [ N ] M ( 1 − q i ) ≥ t − s i , ∀ i ∈ [ N ] q ∈ { 0 , 1 } N , s ≥ 0 , x ∈ X . \begin{aligned} Z_{ICC}^*=\mathop{\min}\limits_{\boldsymbol{q},\boldsymbol{s},t,\boldsymbol{x}} &\quad \boldsymbol{c}^T\boldsymbol{x} \\ \text{s.t.} &\quad \epsilon Nt - \boldsymbol{e}^T\boldsymbol{s} \ge \theta N \lVert \boldsymbol{b}-\boldsymbol{A}^T\boldsymbol{x}\rVert_* \\ &\quad ( \boldsymbol{b}-\boldsymbol{A}^T\boldsymbol{x})^T\hat{\boldsymbol{\xi}}_i+b-\boldsymbol{a}^T\boldsymbol{x}+Mq_i \ge t-s_i, \quad \forall i\in[N] \\ &\quad M(1-q_i)\ge t-s_i , \quad \forall i\in[N] \\ &\quad \boldsymbol{q}\in\{0,1\}^N,\boldsymbol{s}\ge\boldsymbol{0},\boldsymbol{x}\in\mathcal{X}. \end{aligned} ZICC=q,s,t,xmins.t.cTxϵNteTsθNbATx(bATx)Tξ^i+baTx+Mqitsi,i[N]M(1qi)tsi,i[N]q{0,1}N,s0,xX.

联合机会约束(右侧不确定性)的Reformulation

命题. 对于安全集 S ( x ) = { ξ ∈ R K    ∣    a m T x < b m T ξ + b m } \mathcal{S}(\boldsymbol{x}) = \{ \boldsymbol{\xi}\in\mathbb{R}^K \;|\; \boldsymbol{a}_m^T\boldsymbol{x} < \boldsymbol{b}_m^T\boldsymbol{\xi} + b_m \} S(x)={ξRKamTx<bmTξ+bm}。问题 (1) 等价于:
Z J C C ∗ = min ⁡ p , q , s , t , x c T x s.t. ϵ N t − e T s ≥ θ N p i + M q i ≥ t − s i , ∀ i ∈ [ N ] M ( 1 − q i ) ≥ t − s i , ∀ i ∈ [ N ] b m T ξ ^ i + b m − a m T x ∥ b m ∥ ∗ ≥ p i , ∀ m ∈ [ M ] , ∀ i ∈ [ N ] q ∈ { 0 , 1 } N , s ≥ 0 , x ∈ X . \begin{aligned} Z_{JCC}^*=\mathop{\min}\limits_{\boldsymbol{p},\boldsymbol{q},\boldsymbol{s},t,\boldsymbol{x}} &\quad \boldsymbol{c}^T\boldsymbol{x} \\ \text{s.t.} &\quad \epsilon Nt - \boldsymbol{e}^T\boldsymbol{s} \ge \theta N \\ &\quad p_i+Mq_i\ge t-s_i, \quad \forall i\in[N] \\ &\quad M(1-q_i)\ge t-s_i, \quad \forall i\in[N] \\ &\quad \frac{\boldsymbol{b}^T_m\hat{\boldsymbol{\xi}}_i+b_m-\boldsymbol{a}^T_m\boldsymbol{x}}{\lVert\boldsymbol{b}_m\rVert_*} \ge p_i, \quad \forall m\in[M],\forall i\in[N] \\ &\quad \boldsymbol{q}\in\{0,1\}^N,\boldsymbol{s}\ge\boldsymbol{0},\boldsymbol{x}\in\mathcal{X}. \end{aligned} ZJCC=p,q,s,t,xmins.t.cTxϵNteTsθNpi+Mqitsi,i[N]M(1qi)tsi,i[N]bmbmTξ^i+bmamTxpi,m[M],i[N]q{0,1}N,s0,xX.

3. Tractable Safe Approximations

3.1 单个机会约束

Z I C C ∗ = min ⁡ ( x , s , t ) ∈ C I C C c T x Z_{ICC}^*=\mathop{\min}\limits_{(\boldsymbol{x},\boldsymbol{s},t)\in\mathcal{C}_{ICC} } \boldsymbol{c}^T\boldsymbol{x} ZICC=(x,s,t)CICCmincTx
其中
C I C C = { ( x , s , t ) ∈ X × R + N × R    ∣       ϵ N t − e T s ≥ θ N ∥ b − A T x ∥ ∗    ( ( b − A T x ) T ξ ^ i + b − a T x ) + ≥ t − s i , ∀ i ∈ [ N ] } \mathcal{C}_{ICC} =\left\{ (\boldsymbol{x},\boldsymbol{s},t)\in\mathcal{X}\times\mathbb{R}^N_+\times\mathbb{R} \;\Bigg|\; \begin{aligned} &\; \epsilon Nt - \boldsymbol{e}^T\boldsymbol{s} \ge \theta N \lVert \boldsymbol{b}-\boldsymbol{A}^T\boldsymbol{x}\rVert_* \\ &\; \left( ( \boldsymbol{b}- \boldsymbol{A}^T\boldsymbol{x})^T\hat{\boldsymbol{\xi}}_i+b-\boldsymbol{a}^T\boldsymbol{x} \right)^+ \ge t-s_i, \quad \forall i\in[N] \end{aligned} \right\} CICC=(x,s,t)X×R+N×RϵNteTsθNbATx((bATx)Tξ^i+baTx)+tsi,i[N]

C I C C \mathcal{C}_{ICC} CICC 是非-凸的,可以需要找一些凸集来逼近它。
C I C C ( k ) = { ( x , s , t ) ∈ X × R + N × R    ∣       ϵ N t − e T s ≥ θ N ∥ b − A T x ∥ ∗    k i ( ( b − A T x ) T ξ ^ i + b − a T x ) ≥ t − s i , ∀ i ∈ [ N ] } \mathcal{C}_{ICC}(\boldsymbol{k}) =\left\{ (\boldsymbol{x},\boldsymbol{s},t)\in\mathcal{X}\times\mathbb{R}^N_+\times\mathbb{R} \;\Bigg|\; \begin{aligned} &\; \epsilon Nt - \boldsymbol{e}^T\boldsymbol{s} \ge \theta N \lVert \boldsymbol{b}-\boldsymbol{A}^T\boldsymbol{x}\rVert_* \\ &\; k_i \left(( \boldsymbol{b}- \boldsymbol{A}^T\boldsymbol{x})^T\hat{\boldsymbol{\xi}}_i+b-\boldsymbol{a}^T\boldsymbol{x} \right) \ge t-s_i, \quad \forall i\in[N] \end{aligned} \right\} CICC(k)=(x,s,t)X×R+N×RϵNteTsθNbATxki((bATx)Tξ^i+baTx)tsi,i[N]

命题. 对于任何凸集 W ⊆ C I C C \mathcal{W}\subseteq\mathcal{C}_{ICC} WCICC,存在 k ∈ [ 0 , 1 ] N \boldsymbol{k}\in[0,1]^N k[0,1]N,使得 W ⊆ C I C C ( k ) ⊆ C I C C \mathcal{W}\subseteq\mathcal{C}_{ICC}(\boldsymbol{k}) \subseteq\mathcal{C}_{ICC} WCICC(k)CICC

Z I C C ∗ ( k ) = min ⁡ ( x , s , t ) ∈ C I C C ( k ) c T x Z_{ICC}^*(\boldsymbol{k})=\mathop{\min}\limits_{(\boldsymbol{x},\boldsymbol{s},t)\in\mathcal{C}_{ICC}(\boldsymbol{k}) } \boldsymbol{c}^T\boldsymbol{x} ZICC(k)=(x,s,t)CICC(k)mincTx

命题. Z I C C ∗ = min ⁡ k ∈ [ 0 , 1 ] N Z I C C ∗ ( k ) Z_{ICC}^*= \mathop{\min}\limits_{\boldsymbol{k}\in[0,1]^N} Z_{ICC}^*(\boldsymbol{k}) ZICC=k[0,1]NminZICC(k)

命题. min ⁡ k ∈ [ 0 , 1 ] Z I C C ∗ ( k e ) = Z I C C ∗ ( e ) \mathop{\min}\limits_{k\in[0,1]} Z_{ICC}^*(k\boldsymbol{e})= Z_{ICC}^*(\boldsymbol{e}) k[0,1]minZICC(ke)=ZICC(e)

CVaR逼近

P [ ξ ~ ∈ S ( x ) ] ≥ 1 − ϵ ⟺ P [ ( A ξ ~ + a ) T x ≥ b T ξ ~ + b ] ≤ ϵ ⟺ P -VaR ϵ ( a T x − b + ( A T x − b ) T ξ ~ ) ≤ 0 ⟸ P -CVaR ϵ ( a T x − b + ( A T x − b ) T ξ ~ ) ≤ 0 \begin{aligned} &\quad \mathbb{P}[\tilde{\boldsymbol{\xi}} \in \mathcal{S}(\boldsymbol{x})] \ge 1-\epsilon \\ \Longleftrightarrow &\quad \mathbb{P}\left[ (\boldsymbol{A}\tilde{\boldsymbol{\xi}} + \boldsymbol{a} )^T \boldsymbol{x} \ge \boldsymbol{b}^T\tilde{\boldsymbol{\xi}}+b \right] \leq \epsilon \\ \Longleftrightarrow &\quad \mathbb{P}\text{-VaR} _{\epsilon} \left( \boldsymbol{a} ^T \boldsymbol{x} - b + (\boldsymbol{A}^T\boldsymbol{x}-\boldsymbol{b})^T\tilde{\boldsymbol{\xi}} \right) \leq 0 \\ \textcolor{red}{\Longleftarrow} &\quad \mathbb{P}\text{-CVaR} _{\epsilon} \left( \boldsymbol{a} ^T \boldsymbol{x} - b + (\boldsymbol{A}^T\boldsymbol{x}-\boldsymbol{b})^T\tilde{\boldsymbol{\xi}} \right) \leq 0 \end{aligned} P[ξ~S(x)]1ϵP[(Aξ~+a)TxbTξ~+b]ϵP-VaRϵ(aTxb+(ATxb)Tξ~)0P-CVaRϵ(aTxb+(ATxb)Tξ~)0

Z CVaR ∗ = { min ⁡ x ∈ X    c T x s.t.    sup ⁡ P ∈ F ( θ ) P -CVaR ϵ ( a T x − b + ( A T x − b ) T ξ ~ ) ≤ 0 \begin{aligned} Z_{\text{CVaR}}^* = \begin{cases} \mathop{\min}\limits_{\boldsymbol{x}\in\mathcal{X}} \; \boldsymbol{c}^T\boldsymbol{x} \\ \text{s.t.} \; \mathop{\sup}\limits_{\mathbb{P}\in\mathcal{F}(\theta)} \mathbb{P}\text{-CVaR} _{\epsilon} \left( \boldsymbol{a} ^T \boldsymbol{x} - b + (\boldsymbol{A}^T\boldsymbol{x}-\boldsymbol{b})^T\tilde{\boldsymbol{\xi}} \right) \leq 0 \end{cases} \end{aligned} ZCVaR=xXmincTxs.t.PF(θ)supP-CVaRϵ(aTxb+(ATxb)Tξ~)0

命题. Z CVaR ∗ = Z ICC ∗ ( e ) Z_{\text{CVaR}}^* = Z_{\text{ICC}}^* (\boldsymbol{e}) ZCVaR=ZICC(e)

你可能感兴趣的:(鲁棒优化)