# import the necessary packages
from keras.models import Sequential
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dropout
from keras.layers.core import Dense
from keras.regularizers import l2
from keras import backend as K
class AlexNet:
@staticmethod
def build(width, height, depth, classes, reg=0.0002):
# initialize the model along with the input shape to be
# "channels last" and the channels dimension itself
model = Sequential()
inputShape = (height, width, depth)
chanDim = -1
# if we are using "channels first", update the input shape
# and channels dimension
if K.image_data_format() == "channels_first":
inputShape = (depth, height, width)
chanDim = 1
# Block #1: first CONV => RELU => POOL layer set
model.add(Conv2D(96, (11, 11), strides=(4, 4),
input_shape=inputShape, padding="same",
kernel_regularizer=l2(reg)))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(Dropout(0.25))
# Block #2: second CONV => RELU => POOL layer set
model.add(Conv2D(256, (5, 5), padding="same",
kernel_regularizer=l2(reg)))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(Dropout(0.25))
# Block #3: CONV => RELU => CONV => RELU => CONV => RELU
model.add(Conv2D(384, (3, 3), padding="same",
kernel_regularizer=l2(reg)))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(384, (3, 3), padding="same",
kernel_regularizer=l2(reg)))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(256, (3, 3), padding="same",
kernel_regularizer=l2(reg)))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(Dropout(0.25))
# Block #4: first set of FC => RELU layers
model.add(Flatten())
model.add(Dense(4096, kernel_regularizer=l2(reg)))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Dropout(0.5))
# Block #5: second set of FC => RELU layers
model.add(Dense(4096, kernel_regularizer=l2(reg)))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Dropout(0.5))
# softmax classifier
model.add(Dense(classes, kernel_regularizer=l2(reg)))
model.add(Activation("softmax"))
# return the constructed network architecture
return model
然后训练部分代码:
# USAGE
# python train_alexnet.py# import the necessary packages# set the matplotlib backend so figures can be saved in the background
import matplotlib
matplotlib.use("Agg")
# import the necessary packages
from config import dogs_vs_cats_config as config
from pyimagesearch.preprocessing import ImageToArrayPreprocessor
from pyimagesearch.preprocessing import SimplePreprocessor
from pyimagesearch.preprocessing import PatchPreprocessor
from pyimagesearch.preprocessing import MeanPreprocessor
from pyimagesearch.callbacks import TrainingMonitor
from pyimagesearch.io import HDF5DatasetGenerator
from pyimagesearch.nn.conv import AlexNet
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam
import json
import os
# construct the training image generator for data augmentation
aug = ImageDataGenerator(rotation_range=20, zoom_range=0.15,
width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15,
horizontal_flip=True, fill_mode="nearest")
# load the RGB means for the training set
means = json.loads(open(config.DATASET_MEAN).read())
# initialize the image preprocessors
sp = SimplePreprocessor(227, 227)
pp = PatchPreprocessor(227, 227)
mp = MeanPreprocessor(means["R"], means["G"], means["B"])
iap = ImageToArrayPreprocessor()
# initialize the training and validation dataset generators
trainGen = HDF5DatasetGenerator(config.TRAIN_HDF5, 32, aug=aug,
preprocessors=[pp, mp, iap], classes=2)#128
valGen = HDF5DatasetGenerator(config.VAL_HDF5, 32,
preprocessors=[sp, mp, iap], classes=2)#128
# initialize the optimizer
print("[INFO] compiling model...")
opt = Adam(lr=1e-3)
model = AlexNet.build(width=227, height=227, depth=3,
classes=2, reg=0.0002)
model.compile(loss="binary_crossentropy", optimizer=opt,
metrics=["accuracy"])
# construct the set of callbacks
path = os.path.sep.join([config.OUTPUT_PATH, "{}.png".format(
os.getpid())])
callbacks = [TrainingMonitor(path)]
# train the network
model.fit_generator(
trainGen.generator(),
steps_per_epoch=trainGen.numImages // 128,
validation_data=valGen.generator(),
validation_steps=valGen.numImages // 128,
epochs=75,#75
max_queue_size=10,#10
callbacks=callbacks, verbose=1)#mix max_queue_size smaller ,since my macine can't afford
# save the model to file
print("[INFO] serializing model...")
model.save(config.MODEL_PATH, overwrite=True)
# close the HDF5 datasets
trainGen.close()
valGen.close()