【学习笔记】一些模板

诶,开这篇的原因之一是要学习多项式全家桶,想找个地方存板子,否则多项式全家桶那一篇就太长了。
原因之二是发现自己以前的一些模板已经非常不熟悉了,甚至于一些细节已经不知道为什么这么写了。
原因之三就是感觉需要考试前着重复习一些模板,因此就把模板写法、易错点写在一起了。
这里放一些代码,更多理论知识请查看学习笔记。

多项式全家桶

多项式乘法

NTT

for (int len = 2; len <= lim; len <<= 1) {
    int half = len >> 1, w = (type > 0) ? g[cnt] : invg[cnt];
    for (int bg = 0; bg < lim; bg += len) {
        int wn = 1;
        for (int pos = bg; pos < bg + half; ++pos) {
            int tmp = Mul(wn, poly[pos + half]);
            poly[pos + half] = Dec(poly[pos], tmp);
            poly[pos] = Add(poly[pos], tmp);
            wn = Mul(wn, w);
        }
    }
    ++cnt;
}

我将对上面这段代码,我产生过的疑问进行记录。

  • 为什么是g[cnt]?我怎么知道是?
    • 因为g[x]能解决的多项式项数是 \(2^x\) 次多项式的点值转化。

完整代码:

#include 
#include 
using namespace std;
typedef long long ll;
const int Mod = 998244353, G = 3, N = 1e6 + 5;
inline int Rd() {
	int ret = 0, fu = 1;
	char ch = getchar();
	while (!isdigit(ch)) {
		if (ch == '-')
			fu = -1;
		ch = getchar();
	}
	while (isdigit(ch))
		ret = ret * 10 + (ch - '0'), ch = getchar();
	return ret * fu;
}
inline int Add(int x, int y) { return (x + y > Mod) ? (x + y - Mod) : (x + y); }
inline int Dec(int x, int y) { return (x - y < 0) ? (x - y + Mod) : (x - y); }
inline int Mul(int x, int y) { return 1ll * x * y % Mod; }
inline int Pow(int x, int y) {
	int ret = 1;
	for (; y; y >>= 1, x = Mul(x, x))
		if (y & 1)
			ret = Mul(ret, x);
	return ret;
}
int rev[N * 4], lim, g[25], invg[25];
void Init(int n, int m) {
	lim = 1;
	while (lim <= n + m)
		lim <<= 1;
	for (int i = 0; i < lim; ++i)
		rev[i] = (rev[i >> 1] >> 1) | ((i & 1) ? (lim >> 1) : 0);
	for (int i = 1; (1 << i) <= lim; ++i) {
		g[i] = Pow(G, (Mod - 1) / (1 << i));
		invg[i] = Pow(g[i], Mod - 2);
	}
}
void NTT(int *poly, int type) {
	for (int i = 0; i < lim; ++i)
		if (rev[i] > i)
			swap(poly[i], poly[rev[i]]);
	int cnt = 1;
	for (int len = 2; len <= lim; len <<= 1) {
		int half = len >> 1, w = (type > 0) ? g[cnt] : invg[cnt];
		for (int bg = 0; bg < lim; bg += len) {
			int wn = 1;
			for (int pos = bg; pos < bg + half; ++pos) {
				int tmp = Mul(wn, poly[pos + half]);
				poly[pos + half] = Dec(poly[pos], tmp);
				poly[pos] = Add(poly[pos], tmp);
				wn = Mul(wn, w);
			}
		}
		++cnt;
	}
}
int n, m, A[N * 4], B[N * 4];
int main() {
	n = Rd(), m = Rd();
	for (int i = 0; i <= n; ++i)
		A[i] = (Rd() + Mod) % Mod;
	for (int i = 0; i <= m; ++i)
		B[i] = (Rd() + Mod) % Mod;
	Init(n, m);
	NTT(A, 1), NTT(B, 1);
	for (int i = 0; i < lim; ++i)
		A[i] = Mul(A[i], B[i]);
	NTT(A, -1);
	int inv = Pow(lim, Mod - 2);
	for (int i = 0; i <= n + m; ++i)
		printf("%d ", Mul(A[i], inv));
	printf("\n");
	return 0;
}

请推完式子再写NTT,否则容易写错!对着式子写。

FFT

注意使用double类型!

#include 
#include 
#include 
using namespace std;
const int N = 3e6 + 5;
const double PI = acos(-1);
struct Complex {
	double x, y;
	Complex(double _x, double _y) : x(_x), y(_y) {}
	Complex() : x(0), y(0) {}
	Complex operator+(const Complex &d) const { return Complex(x + d.x, y + d.y); }
	Complex operator-(const Complex &d) const { return Complex(x - d.x, y - d.y); }
	Complex operator*(const Complex &d) const { return Complex(x * d.x - y * d.y, x * d.y + y * d.x); }
} f[N], g[N]; //x为实部,y为虚部 
int n, m, rev[N];
void FFT(Complex *poly, int lim, int type) {
	for (int i = 0; i < lim; ++i) if (i < rev[i]) swap(poly[i], poly[rev[i]]);
	for (int len = 2; len <= lim; len <<= 1) {
		int half = len >> 1;
		Complex gen(cos(2 * PI / len), sin(2 * PI / len) * type);
		//这个地方不是 /half而是 /len 
		for (int bg = 0; bg < lim; bg += len) {
			Complex omg(1, 0);
			for (int pos = bg; pos < bg + half; ++pos) {
				Complex tmp = omg * poly[pos + half];
				poly[pos + half] = poly[pos] - tmp;
				//这里是 pos + half,没有 -1 
				poly[pos] = poly[pos] + tmp;
				omg = omg * gen;
			}
		}
	}
}
int main() {
	scanf("%d%d", &n, &m);
	for (int i = 0; i <= n; ++i) scanf("%lf", &f[i].x);
	for (int i = 0; i <= m; ++i) scanf("%lf", &g[i].x);
	int lim = 1, len = n + m + 1;
	while (lim < len) lim = lim << 1;
	for (int i = 1; i < lim; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) ? (lim >> 1) : 0);
	FFT(f, lim, 1);
	FFT(g, lim, 1);
	for (int i = 0; i < lim; ++i) f[i] = f[i] * g[i];
	FFT(f, lim, -1);
	for (int i = 0; i <= n + m; ++i) printf("%d ", (int) (f[i].x / lim + 0.49));
	return 0;
}

三模NTT(任意模数NTT)

实现要些小技巧,就是封装一个类struct Int。这样只需要写一个NTT就行了。

#include 
#include 
using namespace std;
typedef long long ll;
const int N = (1<<18)+5, M1 = 998244353, M2 = 1004535809, M3 = 469762049;
int n, m, mod;
int ad(int x, int y, int z) { return (x+y>z) ? (x+y-z) : (x+y); }
int dc(int x, int y, int z) { return (x-y<0) ? (x-y+z) : (x-y); }
int ml(int x, int y, int z) { return 1ll * x * y % z; }
int ksm(int x, int y, int z) {
	int ret = 1;
	for (; y; y >>= 1, x = ml(x, x, z))
		if (y & 1)
			ret = ml(ret, x, z);
	return ret;
}
const int IV1 = ksm(M1, M2-2, M2), IV2 = ksm(ml(M1, M2, M3), M3-2, M3);
const ll T = 1ll*M1*M2;
struct Int {
	int r1, r2, r3;
	Int(int x, int y, int z) : r1(x), r2(y), r3(z) {}
	Int(int x=0) : r1(x%M1), r2(x%M2), r3(x%M3) {}
	Int operator+(const Int &d) const { return Int(ad(r1, d.r1, M1), ad(r2, d.r2, M2), ad(r3, d.r3, M3)); }
	Int operator-(const Int &d) const { return Int(dc(r1, d.r1, M1), dc(r2, d.r2, M2), dc(r3, d.r3, M3)); }
	Int operator*(const Int &d) const { return Int(ml(r1, d.r1, M1), ml(r2, d.r2, M2), ml(r3, d.r3, M3)); }
	int merge(int MOD) {
		int k1 = ml(dc(r2, r1, M2), IV1, M2);
		ll r4 = (1ll * k1 * M1 + r1) % T;
		int k2 = ml(dc(r3, r4 % M3, M3), IV2, M3);
		return ad(ml(k2, ml(M1, M2, MOD), MOD), r4 % MOD, MOD);
	}
} F[N], G[N], g[20], ig[22];
int rev[N];
void Init() {
	for (int i=0; i<=18; ++i) g[i] = Int(ksm(3, (M1-1)>>i, M1), ksm(3, (M2-1)>>i, M2), ksm(3, (M3-1)>>i, M3));
	for (int i=0; i<=18; ++i) ig[i] = Int(ksm(g[i].r1, M1-2, M1), ksm(g[i].r2, M2-2, M2), ksm(g[i].r3, M3-2, M3));
}
int GetUp(int n) {
	int up = 1;
	while (up<=n) up<<=1;
	return up;
}
void GetRev(int up) {
	for (int i=1; i>1]>>1) | ((i&1) ? (up>>1) : 0);
}
void NTT(Int *f, int type, int up) {
	for (int i=0; i0 ? g[cnt] : ig[cnt];
		int half = len>>1;
		for (int bg=0; bg

多项式exp

由于多项式ln,多项式求逆,都在多项式exp中用过。所以这里只放多项式exp的代码。

注释中有有可能犯的错误。清零的写法与下面多项式ln略有不同。

#include 
#include 
using namespace std;
const int N = 262144 + 5, Mod = 998244353, G = 3;
int ad(int x, int y) { return (x + y > Mod) ? (x + y - Mod) : (x + y); }
int dc(int x, int y) { return (x - y < 0) ? (x - y + Mod) : (x - y); }
int ml(int x, int y) { return (long long) x * y % Mod; }
int ksm(int x, int y) {
	int ret = 1;
	for (; y; y >>= 1, x = ml(x, x))
		if (y & 1) ret = ml(ret, x);
	return ret;
}
int rev[N], g[25], invg[25];
void GetRev(int up) {
	rev[0] = 0;
	for (int i = 1; i < up; ++i)
		rev[i] = (rev[i >> 1] >> 1) | ((i & 1) ? (up >> 1) : 0); //后面板部分可能直接写成up >> 1(没有判i&1)
}
int GetUp(int deg) {
	int up = 1;
	while (up <= deg) up <<= 1;
	return up;
}
void Init() {
	for (int i = 0; i <= 23; ++i) g[i] = ksm(G, (Mod - 1) >> i);
	for (int i = 0; i <= 23; ++i) invg[i] = ksm(g[i], Mod - 2);
}
void NTT(int *F, int up, int tp) {
	for (int i = 0; i < up; ++i)
		if (i < rev[i]) swap(F[i], F[rev[i]]);
	int cnt = 1;
	for (int l = 2; l <= up; l <<= 1) { //这里可能写成 ++l
		int h = l >> 1, w = (tp > 0) ? g[cnt] : invg[cnt];
		for (int b = 0; b < up; b += l) {
			int wp = 1;
			for (int p = b; p < b + h; ++p) {
				int tmp = ml(F[p + h], wp);
				F[p + h] = dc(F[p], tmp);
				F[p] = ad(F[p], tmp);
				wp = ml(wp, w);
			}
		}
		++cnt; //这个地方可能忘记++了
	}
	if (tp < 0) {
		int tmp = ksm(up, Mod - 2);
		for (int i = 0; i < up; ++i) F[i] = ml(F[i], tmp);
	}
}
void Clear(int *F, int L, int R) { //[L,R) 
	for (int i = L; i < R; ++i) F[i] = 0;
}
void Inv(const int *F, int *G0, int up, bool fir = 1) {
	if (fir) Clear(G0, 0, up << 1);
	if (up == 1) { //这里有可能忘记判断边界条件。。。
		G0[0] = ksm(F[0], Mod - 2);
		return ;
	}
	Inv(F, G0, up >> 1, 0);
	static int T[N];
	for (int i = 0; i < up; ++i) T[i] = F[i];
	Clear(T, up, up << 1);
	GetRev(up << 1);
	NTT(G0, up << 1, 1);
	NTT(T, up << 1, 1);
	for (int i = 0; i < (up << 1); ++i) G0[i] = dc(ml(2, G0[i]), ml(ml(G0[i], G0[i]), T[i]));
	//有可能后面写的 ml(ml(G0[i], G0[i]), F[i]) 
	NTT(G0, up << 1, -1);
	Clear(G0, up, up << 1);
}
void Int(int *F, int up) {
	int deg = up - 1;
	for (int i = deg; i >= 1; --i)
		F[i] = ml(F[i - 1], ksm(i, Mod - 2));
	F[0] = 0;
}
void Der(int *F, int up) {
	int deg = up - 1;
	for (int i = 0; i < deg; ++i)
		F[i] = ml(F[i + 1], i + 1);
	F[deg] = 0;
}
void Ln(const int *F, int *G0, int up) {
	for (int i = 0; i < up; ++i) G0[i] = F[i];
	Clear(G0, up, up << 1);
	Der(G0, up);
	static int T[N];
	Inv(F, T, up);
	NTT(G0, up << 1, 1);
	NTT(T, up << 1, 1);
	for (int i = 0; i < (up << 1); ++i) G0[i] = ml(G0[i], T[i]);
	NTT(G0, up << 1, -1);
	Clear(G0, up, up << 1);
	Int(G0, up); //有可能这里忘记积分回去了
} //式子可能推错成 \Int \frac{1}{f(x)}
void Exp(const int *F, int *G0, int up, bool fir = 1) {
	if (fir) Clear(G0, 0, up << 1);
	if (up == 1) {
		G0[0] = 1;
		return ;
	}
	Exp(F, G0, up >> 1);
	static int T[N];
	Ln(G0, T, up);
	for (int i = 0; i < up; ++i) T[i] = dc(F[i], T[i]);
	T[0] = ad(T[0], 1);
	NTT(G0, up << 1, 1);
	NTT(T, up << 1, 1);
	for (int i = 0; i < (up << 1); ++i) G0[i] = ml(G0[i], T[i]);
	NTT(G0, up << 1, -1);
	Clear(G0, up, up << 1);
}
int n, A[N], B[N];
int main() {
	Init();
	scanf("%d", &n);
	--n;
	for (int i = 0; i <= n; ++i) scanf("%d", &A[i]);
	int up = GetUp(n);
	Exp(A, B, up);
	for (int i = 0; i <= n; ++i) printf("%d ", B[i]);
	printf("\n");
	return 0;
}

这种写法是在求完一个数组后把upup<<1都清零。

也可以换成在计算前把upup<<1都清零。

多项式ln

与多项式exp清零写法略有不同。

计算几何

二维凸包

注意:

  • 在计算下凸壳的时候需要用最开始的那个点再弹出一些点。否则凸包上会多一个点。
  • 必两个轴都排序。 \(x\) 轴为第一关键字,\(y\) 轴为第二关键字排序。
#include 
#include 
#include 
using namespace std;
const int N = 1e5 + 5;
const double eps = 1e-10;
bool eql(double x, double y) { return abs(x - y) < eps; }
struct Dot {
    double x, y;
    Dot(double _x = 0, double _y = 0) : x(_x), y(_y) {}
    Dot operator-(const Dot &d) const { return Dot(x - d.x, y - d.y); }
    double operator^(const Dot &d) const { return x * d.y - d.x * y; }
    bool operator<(const Dot &d) const { return x < d.x; }
} dt[N];
double dis(Dot x, Dot y) { return sqrt((x.x - y.x) * (x.x - y.x) + (x.y - y.y) * (x.y - y.y)); }
int n, stk[N], tp;
bool vis[N];
int main() {
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i) scanf("%lf%lf", &dt[i].x, &dt[i].y);
    sort(dt + 1, dt + n + 1);
    //先计算上凸壳 
    for (int i = 1; i <= n; ++i) {
    	while (tp >= 2 && ((dt[stk[tp - 1]] - dt[stk[tp]]) ^ (dt[stk[tp]] - dt[i])) > -eps)
    		vis[stk[tp--]] = 0;
    	stk[++tp] = i;
    	vis[i] = 1;
	}
	vis[1] = 0;
	//在围下凸壳的时候需要用 1号点再弹出一些点 
	int nb = tp;
	for (int i = n; i >= 1; --i) {
		if (vis[i])
			continue ;
		while (tp > nb && ((dt[stk[tp - 1]] - dt[stk[tp]]) ^ (dt[stk[tp]] - dt[i])) > -eps)
			--tp;
		stk[++tp] = i;
	}
	double ans = 0;
	for (int i = 1; i <= tp; ++i)
		ans += dis(dt[stk[i]], dt[stk[i % tp + 1]]);
	printf("%.2lf\n", ans);
    return 0;
}

旋转卡壳

注意:

  • 凸包上避免三点共线
  • 注意特判只有两个点的情况
  • 卡壳的时候必须是\(\le\) (注释中有)因为可能有平行的边。
#include 
#include 
#include 
using namespace std;
const int N = 5e4 + 5;
struct dot {
	int x, y;
	dot(int _x = 0, int _y = 0) : x(_x), y(_y) {}
	dot operator-(const dot &d) const { return dot(x - d.x, y - d.y); }
	int operator*(const dot &d) const { return x * d.y - y * d.x; }
	bool operator<(const dot &d) const { return (x == d.x) ? (y < d.y) : (x < d.x); }
} dt[N];
int dis(dot a, dot b) { return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y); }
int n, stk[N];
bool use[N];
int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n; ++i)
		scanf("%d%d", &dt[i].x, &dt[i].y);
	sort(dt + 1, dt + n + 1);
	int tp = 0;
	for (int i = 1; i <= n; ++i) {
		while (tp >= 2 && (dt[stk[tp - 1]] - dt[stk[tp]]) * (dt[stk[tp]] - dt[i]) >= 0) {
			use[stk[tp]] = 0;
			--tp;
		}
		use[i] = 1;
		stk[++tp] = i;
	}
	use[1] = 0;
	int rec = tp;
	for (int i = n; i >= 1; --i) {
		if (use[i]) continue ;
		while (tp > rec && (dt[stk[tp - 1]] - dt[stk[tp]]) * (dt[stk[tp]] - dt[i]) >= 0)
			--tp; //这里是>=0,为了避免凸包上出现三点共线。
		stk[++tp] = i;
	}
	if (tp == 3) {
		printf("%d\n", dis(dt[stk[1]], dt[stk[2]]));
		return 0;
	}
	int ans = 0, pt = 1;
	for (int i = 1; i < tp; ++i) {
		int x = stk[i], y = stk[i + 1];
		while ((dt[y] - dt[stk[pt]]) * (dt[x] - dt[stk[pt]]) <= (dt[y] - dt[stk[pt % tp + 1]]) * (dt[x] - dt[stk[pt % tp + 1]])) //必须是<=。
			pt = pt % (tp - 1) + 1;
		ans = max(ans, max(dis(dt[x], dt[stk[pt]]), dis(dt[y], dt[stk[pt]])));
	}
	printf("%d\n", ans);
	return 0;
}

你可能感兴趣的:(【学习笔记】一些模板)