实现了基于OpenCV的CLAHE实现和研究。从最基本的开始做,分别实现HE算法,AHE算法,CLHE算法和CLAHE算法。同时调用OpenCV生成代码和自己编写代码进行比对。以别人的灰度图像例子,自己研究彩色处理。
int _tmain(int argc, _TCHAR* argv[])
{
//读入灰度的手部图像
Mat src = imread("arm.jpg",0);
Mat dst = src.clone();
Mat HT_OpenCV;
Mat HT_GO;
Mat AHE_GO;
Mat CLHE_GO;
Mat CLAHE_Without_Interpolation;
Mat CLAHE_OpenCV;
Mat CLAHE_GO;
Mat matInter;
////OpenCV HT 方法
cv::equalizeHist(src,HT_OpenCV);
////GO HT方法
HT_GO = eaualizeHist_GO(src);
////GO AHE方法
AHE_GO = aheGO(src);
////GO CLHE方法
CLHE_GO = clheGO(src);
////clahe不计算差值
CLAHE_Without_Interpolation = claheGoWithoutInterpolation(src);
////OpenCV CLAHE 方法
Ptr<cv::CLAHE> clahe = createCLAHE();//默认参数
clahe->apply(src, CLAHE_OpenCV);
////GO CLAHE方法
CLAHE_GO = claheGO(src);
////结果显示
imshow("原始图像",src);
imshow("OpencvHT",HT_OpenCV);
imshow("GOHT",HT_GO);
imshow("GOAHE",AHE_GO);
imshow("GOCLHE",CLHE_GO);
imshow("GOCLAHE",CLAHE_GO);
imshow("CLAHE_Without_Interpolation",CLAHE_Without_Interpolation);
imshow("OpencvCLAHE",CLAHE_OpenCV);
waitKey();
return 0;
}
HE算法:Mat eaualizeHist_GO(Mat src)
Mat eaualizeHist_GO(Mat src)
{
int width = src.cols;
int height= src.rows;
Mat HT_GO = src.clone();
int tmp[256] ={0};
float C[256] = {0.0};
int total = width*height;
for (int i=0 ;ifor (int j=0;jint index = src.at(i,j);
tmp[index] ++;
}
}
//计算累积函数
for(int i = 0;i < 256 ; i++){
if(i == 0)
C[i] = 1.0f * tmp[i] / total;
else
C[i] = C[i-1] + 1.0f * tmp[i] / total;
}
//这里的累积函数分配的方法非常直观高效
for(int i = 0;i < src.rows;i++){
for(int j = 0;j < src.cols;j++){
int index = src.at(i,j);
HT_GO.at(i,j) = C[index] * 255 ;
}
}
return HT_GO;
}
AHE算法:
Mat aheGO(Mat src,int _step = 8)
{
Mat AHE_GO = src.clone();
int block = _step;
int width = src.cols;
int height = src.rows;
int width_block = width/block; //每个小格子的长和宽
int height_block = height/block;
//存储各个直方图
int tmp2[8*8][256] ={0};
float C2[8*8][256] = {0.0};
//分块
int total = width_block * height_block;
for (int i=0;ifor (int j=0;jint start_x = i*width_block;
int end_x = start_x + width_block;
int start_y = j*height_block;
int end_y = start_y + height_block;
int num = i+block*j;
//遍历小块,计算直方图
for(int ii = start_x ; ii < end_x ; ii++)
{
for(int jj = start_y ; jj < end_y ; jj++)
{
int index =src.at(jj,ii);
tmp2[num][index]++;
}
}
//计算累积分布直方图
for(int k = 0 ; k < 256 ; k++)
{
if( k == 0)
C2[num][k] = 1.0f * tmp2[num][k] / total;
else
C2[num][k] = C2[num][k-1] + 1.0f * tmp2[num][k] / total;
}
}
}
//将统计结果写入
for (int i=0;ifor (int j=0;jint start_x = i*width_block;
int end_x = start_x + width_block;
int start_y = j*height_block;
int end_y = start_y + height_block;
int num = i+block*j;
//遍历小块,计算直方图
for(int ii = start_x ; ii < end_x ; ii++)
{
for(int jj = start_y ; jj < end_y ; jj++)
{
int index =src.at(jj,ii);
//结果直接写入AHE_GO中去
AHE_GO.at(jj,ii) = C2[num][index] * 255 ;
}
}
}
}
return AHE_GO;
}
CLHE算法:
//这里是在全局直方图加入“限制对比度”方法
Mat clheGO(Mat src,int _step = 8)
{
int width = src.cols;
int height= src.rows;
Mat CLHE_GO = src.clone();
int tmp[256] ={0};
float C[256] = {0.0};
int total = width*height;
for (int i=0 ;ifor (int j=0;jint index = src.at(i,j);
tmp[index] ++;
}
}
/////////////////////////限制对比度计算部分,注意这个地方average的计算不一定科学
int average = width * height / 255/64;
int LIMIT = 4 * average;
int steal = 0;
for(int k = 0 ; k < 256 ; k++)
{
if(tmp[k] > LIMIT){
steal += tmp[k] - LIMIT;
tmp[k] = LIMIT;
}
}
int bonus = steal/256;
//hand out the steals averagely
for(int k = 0 ; k < 256 ; k++)
{
tmp[k] += bonus;
}
///////////////////////////////////////////
//计算累积函数
for(int i = 0;i < 256 ; i++){
if(i == 0)
C[i] = 1.0f * tmp[i] / total;
else
C[i] = C[i-1] + 1.0f * tmp[i] / total;
}
//这里的累积函数分配的方法非常直观高效
for(int i = 0;i < src.rows;i++){
for(int j = 0;j < src.cols;j++){
int index = src.at(i,j);
CLHE_GO.at(i,j) = C[index] * 255 ;
}
}
return CLHE_GO;
}
CLAHE不包括插值算法:
Mat claheGoWithoutInterpolation(Mat src, int _step = 8)
{
Mat CLAHE_GO = src.clone();
int block = _step;//pblock
int width = src.cols;
int height= src.rows;
int width_block = width/block; //每个小格子的长和宽
int height_block = height/block;
//存储各个直方图
int tmp2[8*8][256] ={0};
float C2[8*8][256] = {0.0};
//分块
int total = width_block * height_block;
for (int i=0;ifor (int j=0;jint start_x = i*width_block;
int end_x = start_x + width_block;
int start_y = j*height_block;
int end_y = start_y + height_block;
int num = i+block*j;
//遍历小块,计算直方图
for(int ii = start_x ; ii < end_x ; ii++)
{
for(int jj = start_y ; jj < end_y ; jj++)
{
int index =src.at(jj,ii);
tmp2[num][index]++;
}
}
//裁剪和增加操作,也就是clahe中的cl部分
//这里的参数 对应《Gem》上面 fCliplimit = 4 , uiNrBins = 255
int average = width_block * height_block / 255;
int LIMIT = 4 * average;
int steal = 0;
for(int k = 0 ; k < 256 ; k++)
{
if(tmp2[num][k] > LIMIT){
steal += tmp2[num][k] - LIMIT;
tmp2[num][k] = LIMIT;
}
}
int bonus = steal/256;
//hand out the steals averagely
for(int k = 0 ; k < 256 ; k++)
{
tmp2[num][k] += bonus;
}
//计算累积分布直方图
for(int k = 0 ; k < 256 ; k++)
{
if( k == 0)
C2[num][k] = 1.0f * tmp2[num][k] / total;
else
C2[num][k] = C2[num][k-1] + 1.0f * tmp2[num][k] / total;
}
}
}
//计算变换后的像素值
//将统计结果写入
for (int i=0;ifor (int j=0;jint start_x = i*width_block;
int end_x = start_x + width_block;
int start_y = j*height_block;
int end_y = start_y + height_block;
int num = i+block*j;
//遍历小块,计算直方图
for(int ii = start_x ; ii < end_x ; ii++)
{
for(int jj = start_y ; jj < end_y ; jj++)
{
int index =src.at(jj,ii);
//结果直接写入AHE_GO中去
CLAHE_GO.at(jj,ii) = C2[num][index] * 255 ;
}
}
}
}
return CLAHE_GO;
}
CLAHE算法:
Mat claheGO(Mat src,int _step = 8)
{
Mat CLAHE_GO = src.clone();
int block = _step;//pblock
int width = src.cols;
int height= src.rows;
int width_block = width/block; //每个小格子的长和宽
int height_block = height/block;
//存储各个直方图
int tmp2[8*8][256] ={0};
float C2[8*8][256] = {0.0};
//分块
int total = width_block * height_block;
for (int i=0;ifor (int j=0;jint start_x = i*width_block;
int end_x = start_x + width_block;
int start_y = j*height_block;
int end_y = start_y + height_block;
int num = i+block*j;
//遍历小块,计算直方图
for(int ii = start_x ; ii < end_x ; ii++)
{
for(int jj = start_y ; jj < end_y ; jj++)
{
int index =src.at<uchar>(jj,ii);
tmp2[num][index]++;
}
}
//裁剪和增加操作,也就是clahe中的cl部分
//这里的参数 对应《Gem》上面 fCliplimit = 4 , uiNrBins = 255
int average = width_block * height_block / 255;
//关于参数如何选择,需要进行讨论。不同的结果进行讨论
//关于全局的时候,这里的这个cl如何算,需要进行讨论
int LIMIT = 40 * average;
int steal = 0;
for(int k = 0 ; k < 256 ; k++)
{
if(tmp2[num][k] > LIMIT){
steal += tmp2[num][k] - LIMIT;
tmp2[num][k] = LIMIT;
}
}
int bonus = steal/256;
//hand out the steals averagely
for(int k = 0 ; k < 256 ; k++)
{
tmp2[num][k] += bonus;
}
//计算累积分布直方图
for(int k = 0 ; k < 256 ; k++)
{
if( k == 0)
C2[num][k] = 1.0f * tmp2[num][k] / total;
else
C2[num][k] = C2[num][k-1] + 1.0f * tmp2[num][k] / total;
}
}
}
//计算变换后的像素值
//根据像素点的位置,选择不同的计算方法
for(int i = 0 ; i < width; i++)
{
for(int j = 0 ; j < height; j++)
{
//four coners
if(i <= width_block/2 && j <= height_block/2)
{
int num = 0;
CLAHE_GO.at<uchar>(j,i) = (int)(C2[num][CLAHE_GO.at<uchar>(j,i)] * 255);
}else if(i <= width_block/2 && j >= ((block-1)*height_block + height_block/2)){
int num = block*(block-1);
CLAHE_GO.at<uchar>(j,i) = (int)(C2[num][CLAHE_GO.at<uchar>(j,i)] * 255);
}else if(i >= ((block-1)*width_block+width_block/2) && j <= height_block/2){
int num = block-1;
CLAHE_GO.at<uchar>(j,i) = (int)(C2[num][CLAHE_GO.at<uchar>(j,i)] * 255);
}else if(i >= ((block-1)*width_block+width_block/2) && j >= ((block-1)*height_block + height_block/2)){
int num = block*block-1;
CLAHE_GO.at<uchar>(j,i) = (int)(C2[num][CLAHE_GO.at<uchar>(j,i)] * 255);
}
//four edges except coners
else if( i <= width_block/2 )
{
//线性插值
int num_i = 0;
int num_j = (j - height_block/2)/height_block;
int num1 = num_j*block + num_i;
int num2 = num1 + block;
float p = (j - (num_j*height_block+height_block/2))/(1.0f*height_block);
float q = 1-p;
CLAHE_GO.at<uchar>(j,i) = (int)((q*C2[num1][CLAHE_GO.at<uchar>(j,i)]+ p*C2[num2][CLAHE_GO.at<uchar>(j,i)])* 255);
}else if( i >= ((block-1)*width_block+width_block/2)){
//线性插值
int num_i = block-1;
int num_j = (j - height_block/2)/height_block;
int num1 = num_j*block + num_i;
int num2 = num1 + block;
float p = (j - (num_j*height_block+height_block/2))/(1.0f*height_block);
float q = 1-p;
CLAHE_GO.at<uchar>(j,i) = (int)((q*C2[num1][CLAHE_GO.at<uchar>(j,i)]+ p*C2[num2][CLAHE_GO.at<uchar>(j,i)])* 255);
}else if( j <= height_block/2 ){
//线性插值
int num_i = (i - width_block/2)/width_block;
int num_j = 0;
int num1 = num_j*block + num_i;
int num2 = num1 + 1;
float p = (i - (num_i*width_block+width_block/2))/(1.0f*width_block);
float q = 1-p;
CLAHE_GO.at<uchar>(j,i) = (int)((q*C2[num1][CLAHE_GO.at<uchar>(j,i)]+ p*C2[num2][CLAHE_GO.at<uchar>(j,i)])* 255);
}else if( j >= ((block-1)*height_block + height_block/2) ){
//线性插值
int num_i = (i - width_block/2)/width_block;
int num_j = block-1;
int num1 = num_j*block + num_i;
int num2 = num1 + 1;
float p = (i - (num_i*width_block+width_block/2))/(1.0f*width_block);
float q = 1-p;
CLAHE_GO.at<uchar>(j,i) = (int)((q*C2[num1][CLAHE_GO.at<uchar>(j,i)]+ p*C2[num2][CLAHE_GO.at<uchar>(j,i)])* 255);
}
//双线性插值
else{
int num_i = (i - width_block/2)/width_block;
int num_j = (j - height_block/2)/height_block;
int num1 = num_j*block + num_i;
int num2 = num1 + 1;
int num3 = num1 + block;
int num4 = num2 + block;
float u = (i - (num_i*width_block+width_block/2))/(1.0f*width_block);
float v = (j - (num_j*height_block+height_block/2))/(1.0f*height_block);
CLAHE_GO.at<uchar>(j,i) = (int)((u*v*C2[num4][CLAHE_GO.at<uchar>(j,i)] +
(1-v)*(1-u)*C2[num1][CLAHE_GO.at<uchar>(j,i)] +
u*(1-v)*C2[num2][CLAHE_GO.at<uchar>(j,i)] +
v*(1-u)*C2[num3][CLAHE_GO.at<uchar>(j,i)]) * 255);
}
//最后这步,类似高斯平滑
CLAHE_GO.at<uchar>(j,i) = CLAHE_GO.at<uchar>(j,i) + (CLAHE_GO.at<uchar>(j,i) << 8) + (CLAHE_GO.at<uchar>(j,i) << 16);
}
}
return CLAHE_GO;
}
我自己写的main函数
int main()
{
Mat src = imread("12.jpg");
Mat original= imread("12.jpg");
//cvtColor(src,gray,COLOR_BGR2GRAY);
std::vector channels(3);
cv::split(src, channels);
channels.at(0) = claheGO(channels.at(0));
channels.at(1) = claheGO(channels.at(1));
channels.at(2) = claheGO(channels.at(2));
merge(channels, src);
imshow("original", original);
imshow("final", src);
//imwrite("RGB合并", src);
//imwrite("gray", src);
cv::waitKey(0);
//destroyAllWindows();
return 0;
}