CLAHE

实现了基于OpenCV的CLAHE实现和研究。从最基本的开始做,分别实现HE算法,AHE算法,CLHE算法和CLAHE算法。同时调用OpenCV生成代码和自己编写代码进行比对。以别人的灰度图像例子,自己研究彩色处理。

int _tmain(int argc, _TCHAR* argv[])
{
    //读入灰度的手部图像
    Mat src = imread("arm.jpg",0);
    Mat dst = src.clone();
    Mat HT_OpenCV;
    Mat HT_GO;
    Mat AHE_GO;
    Mat CLHE_GO;
    Mat CLAHE_Without_Interpolation;
    Mat CLAHE_OpenCV;
    Mat CLAHE_GO;
    Mat matInter;
    ////OpenCV HT 方法
    cv::equalizeHist(src,HT_OpenCV);
    ////GO HT方法
    HT_GO = eaualizeHist_GO(src);
    ////GO AHE方法
    AHE_GO = aheGO(src);
    ////GO CLHE方法
    CLHE_GO = clheGO(src);
    ////clahe不计算差值
    CLAHE_Without_Interpolation = claheGoWithoutInterpolation(src);
    ////OpenCV CLAHE 方法
    Ptr<cv::CLAHE> clahe = createCLAHE();//默认参数
    clahe->apply(src, CLAHE_OpenCV);
    ////GO CLAHE方法
    CLAHE_GO = claheGO(src);

    ////结果显示
    imshow("原始图像",src);
    imshow("OpencvHT",HT_OpenCV);
    imshow("GOHT",HT_GO);
    imshow("GOAHE",AHE_GO);
    imshow("GOCLHE",CLHE_GO);
    imshow("GOCLAHE",CLAHE_GO);
    imshow("CLAHE_Without_Interpolation",CLAHE_Without_Interpolation);
    imshow("OpencvCLAHE",CLAHE_OpenCV);
    waitKey();
    return 0;
}

HE算法:Mat eaualizeHist_GO(Mat src)

Mat eaualizeHist_GO(Mat src)
{
    int width = src.cols;
    int height= src.rows;
    Mat HT_GO = src.clone();
    int tmp[256] ={0};
    float C[256] = {0.0};
    int total = width*height;  
    for (int i=0 ;ifor (int j=0;jint index = src.at(i,j);
            tmp[index] ++;
        }
    }
    //计算累积函数  
    for(int i = 0;i < 256 ; i++){  
        if(i == 0)  
            C[i] = 1.0f * tmp[i] / total;  
        else  
            C[i] = C[i-1] + 1.0f * tmp[i] / total;  
    }  
    //这里的累积函数分配的方法非常直观高效
    for(int i = 0;i < src.rows;i++){  
        for(int j = 0;j < src.cols;j++){      
            int index = src.at(i,j);
            HT_GO.at(i,j) = C[index] * 255  ;
        }  
    }  
    return HT_GO;
}

AHE算法:

Mat aheGO(Mat src,int _step = 8)
{
    Mat AHE_GO = src.clone();
    int block = _step;
    int width = src.cols;
    int height = src.rows;
    int width_block = width/block; //每个小格子的长和宽
    int height_block = height/block;
    //存储各个直方图  
    int tmp2[8*8][256] ={0};
    float C2[8*8][256] = {0.0};
    //分块
    int total = width_block * height_block; 
    for (int i=0;ifor (int j=0;jint start_x = i*width_block;
            int end_x = start_x + width_block;
            int start_y = j*height_block;
            int end_y = start_y + height_block;
            int num = i+block*j;  
            //遍历小块,计算直方图
            for(int ii = start_x ; ii < end_x ; ii++)  
            {  
                for(int jj = start_y ; jj < end_y ; jj++)  
                {  
                    int index =src.at(jj,ii);
                    tmp2[num][index]++;  
                }  
            } 
            //计算累积分布直方图  
            for(int k = 0 ; k < 256 ; k++)  
            {  
                if( k == 0)  
                    C2[num][k] = 1.0f * tmp2[num][k] / total;  
                else  
                    C2[num][k] = C2[num][k-1] + 1.0f * tmp2[num][k] / total;  
            }  
        }
    }
    //将统计结果写入
    for (int i=0;ifor (int j=0;jint start_x = i*width_block;
            int end_x = start_x + width_block;
            int start_y = j*height_block;
            int end_y = start_y + height_block;
            int num = i+block*j;  
            //遍历小块,计算直方图
            for(int ii = start_x ; ii < end_x ; ii++)  
            {  
                for(int jj = start_y ; jj < end_y ; jj++)  
                {  
                    int index =src.at(jj,ii);
                    //结果直接写入AHE_GO中去
                    AHE_GO.at(jj,ii) = C2[num][index] * 255  ;
                }  
            } 
        }
    }
    return AHE_GO;
}

CLHE算法:

//这里是在全局直方图加入“限制对比度”方法
Mat clheGO(Mat src,int _step = 8)
{
    int width = src.cols;
    int height= src.rows;
    Mat CLHE_GO = src.clone();
    int tmp[256] ={0};
    float C[256] = {0.0};
    int total = width*height;  
    for (int i=0 ;ifor (int j=0;jint index = src.at(i,j);
            tmp[index] ++;
        }
    }
    /////////////////////////限制对比度计算部分,注意这个地方average的计算不一定科学
    int average = width * height / 255/64;  
    int LIMIT = 4 * average;  
    int steal = 0;  
    for(int k = 0 ; k < 256 ; k++)  
    {  
        if(tmp[k] > LIMIT){  
            steal += tmp[k] - LIMIT;  
            tmp[k] = LIMIT;  
        }  
    }  
    int bonus = steal/256;  
    //hand out the steals averagely  
    for(int k = 0 ; k < 256 ; k++)  
    {  
        tmp[k] += bonus;  
    }  
    ///////////////////////////////////////////
    //计算累积函数  
    for(int i = 0;i < 256 ; i++){  
        if(i == 0)  
            C[i] = 1.0f * tmp[i] / total;  
        else  
            C[i] = C[i-1] + 1.0f * tmp[i] / total;  
    }  
    //这里的累积函数分配的方法非常直观高效
    for(int i = 0;i < src.rows;i++){  
        for(int j = 0;j < src.cols;j++){      
            int index = src.at(i,j);
            CLHE_GO.at(i,j) = C[index] * 255  ;
        }  
    }  
    return CLHE_GO;
}

CLAHE不包括插值算法:

Mat claheGoWithoutInterpolation(Mat src, int _step = 8)
{
    Mat CLAHE_GO = src.clone();
    int block = _step;//pblock
    int width = src.cols;
    int height= src.rows;
    int width_block = width/block; //每个小格子的长和宽
    int height_block = height/block;
    //存储各个直方图  
    int tmp2[8*8][256] ={0};
    float C2[8*8][256] = {0.0};
    //分块
    int total = width_block * height_block; 
    for (int i=0;ifor (int j=0;jint start_x = i*width_block;
            int end_x = start_x + width_block;
            int start_y = j*height_block;
            int end_y = start_y + height_block;
            int num = i+block*j;  
            //遍历小块,计算直方图
            for(int ii = start_x ; ii < end_x ; ii++)  
            {  
                for(int jj = start_y ; jj < end_y ; jj++)  
                {  
                    int index =src.at(jj,ii);
                    tmp2[num][index]++;  
                }  
            } 
            //裁剪和增加操作,也就是clahe中的cl部分
            //这里的参数 对应《Gem》上面 fCliplimit  = 4  , uiNrBins  = 255
            int average = width_block * height_block / 255;  
            int LIMIT = 4 * average;  
            int steal = 0;  
            for(int k = 0 ; k < 256 ; k++)  
            {  
                if(tmp2[num][k] > LIMIT){  
                    steal += tmp2[num][k] - LIMIT;  
                    tmp2[num][k] = LIMIT;  
                }  
            }  
            int bonus = steal/256;  
            //hand out the steals averagely  
            for(int k = 0 ; k < 256 ; k++)  
            {  
                tmp2[num][k] += bonus;  
            }  
            //计算累积分布直方图  
            for(int k = 0 ; k < 256 ; k++)  
            {  
                if( k == 0)  
                    C2[num][k] = 1.0f * tmp2[num][k] / total;  
                else  
                    C2[num][k] = C2[num][k-1] + 1.0f * tmp2[num][k] / total;  
            }  
        }
    }
    //计算变换后的像素值  
    //将统计结果写入
    for (int i=0;ifor (int j=0;jint start_x = i*width_block;
            int end_x = start_x + width_block;
            int start_y = j*height_block;
            int end_y = start_y + height_block;
            int num = i+block*j;  
            //遍历小块,计算直方图
            for(int ii = start_x ; ii < end_x ; ii++)  
            {  
                for(int jj = start_y ; jj < end_y ; jj++)  
                {  
                    int index =src.at(jj,ii);
                    //结果直接写入AHE_GO中去
                    CLAHE_GO.at(jj,ii) = C2[num][index] * 255  ;
                }  
            } 
        }

     }  
    return CLAHE_GO;
}

CLAHE算法:

Mat claheGO(Mat src,int _step = 8)
{
    Mat CLAHE_GO = src.clone();
    int block = _step;//pblock
    int width = src.cols;
    int height= src.rows;
    int width_block = width/block; //每个小格子的长和宽
    int height_block = height/block;
    //存储各个直方图  
    int tmp2[8*8][256] ={0};
    float C2[8*8][256] = {0.0};
    //分块
    int total = width_block * height_block; 
    for (int i=0;ifor (int j=0;jint start_x = i*width_block;
            int end_x = start_x + width_block;
            int start_y = j*height_block;
            int end_y = start_y + height_block;
            int num = i+block*j;  
            //遍历小块,计算直方图
            for(int ii = start_x ; ii < end_x ; ii++)  
            {  
                for(int jj = start_y ; jj < end_y ; jj++)  
                {  
                    int index =src.at<uchar>(jj,ii);
                    tmp2[num][index]++;  
                }  
            } 
            //裁剪和增加操作,也就是clahe中的cl部分
            //这里的参数 对应《Gem》上面 fCliplimit  = 4  , uiNrBins  = 255
            int average = width_block * height_block / 255;  
            //关于参数如何选择,需要进行讨论。不同的结果进行讨论
            //关于全局的时候,这里的这个cl如何算,需要进行讨论 
            int LIMIT = 40 * average;  
            int steal = 0;  
            for(int k = 0 ; k < 256 ; k++)  
            {  
                if(tmp2[num][k] > LIMIT){  
                    steal += tmp2[num][k] - LIMIT;  
                    tmp2[num][k] = LIMIT;  
                }  
            }  
            int bonus = steal/256;  
            //hand out the steals averagely  
            for(int k = 0 ; k < 256 ; k++)  
            {  
                tmp2[num][k] += bonus;  
            }  
            //计算累积分布直方图  
            for(int k = 0 ; k < 256 ; k++)  
            {  
                if( k == 0)  
                    C2[num][k] = 1.0f * tmp2[num][k] / total;  
                else  
                    C2[num][k] = C2[num][k-1] + 1.0f * tmp2[num][k] / total;  
            }  
        }
    }
    //计算变换后的像素值  
    //根据像素点的位置,选择不同的计算方法  
    for(int  i = 0 ; i < width; i++)  
    {  
        for(int j = 0 ; j < height; j++)  
        {  
            //four coners  
            if(i <= width_block/2 && j <= height_block/2)  
            {  
                int num = 0;  
                CLAHE_GO.at<uchar>(j,i) = (int)(C2[num][CLAHE_GO.at<uchar>(j,i)] * 255);  
            }else if(i <= width_block/2 && j >= ((block-1)*height_block + height_block/2)){  
                int num = block*(block-1);  
                CLAHE_GO.at<uchar>(j,i) = (int)(C2[num][CLAHE_GO.at<uchar>(j,i)] * 255);  
            }else if(i >= ((block-1)*width_block+width_block/2) && j <= height_block/2){  
                int num = block-1;  
                CLAHE_GO.at<uchar>(j,i) = (int)(C2[num][CLAHE_GO.at<uchar>(j,i)] * 255);  
            }else if(i >= ((block-1)*width_block+width_block/2) && j >= ((block-1)*height_block + height_block/2)){  
                int num = block*block-1;  
                CLAHE_GO.at<uchar>(j,i) = (int)(C2[num][CLAHE_GO.at<uchar>(j,i)] * 255);  
            }  
            //four edges except coners  
            else if( i <= width_block/2 )  
            {  
                //线性插值  
                int num_i = 0;  
                int num_j = (j - height_block/2)/height_block;  
                int num1 = num_j*block + num_i;  
                int num2 = num1 + block;  
                float p =  (j - (num_j*height_block+height_block/2))/(1.0f*height_block);  
                float q = 1-p;  
                CLAHE_GO.at<uchar>(j,i) = (int)((q*C2[num1][CLAHE_GO.at<uchar>(j,i)]+ p*C2[num2][CLAHE_GO.at<uchar>(j,i)])* 255);  
            }else if( i >= ((block-1)*width_block+width_block/2)){  
                //线性插值  
                int num_i = block-1;  
                int num_j = (j - height_block/2)/height_block;  
                int num1 = num_j*block + num_i;  
                int num2 = num1 + block;  
                float p =  (j - (num_j*height_block+height_block/2))/(1.0f*height_block);  
                float q = 1-p;  
                CLAHE_GO.at<uchar>(j,i) = (int)((q*C2[num1][CLAHE_GO.at<uchar>(j,i)]+ p*C2[num2][CLAHE_GO.at<uchar>(j,i)])* 255);  
            }else if( j <= height_block/2 ){  
                //线性插值  
                int num_i = (i - width_block/2)/width_block;  
                int num_j = 0;  
                int num1 = num_j*block + num_i;  
                int num2 = num1 + 1;  
                float p =  (i - (num_i*width_block+width_block/2))/(1.0f*width_block);  
                float q = 1-p;  
                CLAHE_GO.at<uchar>(j,i) = (int)((q*C2[num1][CLAHE_GO.at<uchar>(j,i)]+ p*C2[num2][CLAHE_GO.at<uchar>(j,i)])* 255);  
            }else if( j >= ((block-1)*height_block + height_block/2) ){  
                //线性插值  
                int num_i = (i - width_block/2)/width_block;  
                int num_j = block-1;  
                int num1 = num_j*block + num_i;  
                int num2 = num1 + 1;  
                float p =  (i - (num_i*width_block+width_block/2))/(1.0f*width_block);  
                float q = 1-p;  
                CLAHE_GO.at<uchar>(j,i) = (int)((q*C2[num1][CLAHE_GO.at<uchar>(j,i)]+ p*C2[num2][CLAHE_GO.at<uchar>(j,i)])* 255);  
            }  
            //双线性插值
            else{  
                int num_i = (i - width_block/2)/width_block;  
                int num_j = (j - height_block/2)/height_block;  
                int num1 = num_j*block + num_i;  
                int num2 = num1 + 1;  
                int num3 = num1 + block;  
                int num4 = num2 + block;  
                float u = (i - (num_i*width_block+width_block/2))/(1.0f*width_block);  
                float v = (j - (num_j*height_block+height_block/2))/(1.0f*height_block);  
                CLAHE_GO.at<uchar>(j,i) = (int)((u*v*C2[num4][CLAHE_GO.at<uchar>(j,i)] +   
                    (1-v)*(1-u)*C2[num1][CLAHE_GO.at<uchar>(j,i)] +  
                    u*(1-v)*C2[num2][CLAHE_GO.at<uchar>(j,i)] +  
                    v*(1-u)*C2[num3][CLAHE_GO.at<uchar>(j,i)]) * 255);  
            }  
            //最后这步,类似高斯平滑
            CLAHE_GO.at<uchar>(j,i) = CLAHE_GO.at<uchar>(j,i) + (CLAHE_GO.at<uchar>(j,i) << 8) + (CLAHE_GO.at<uchar>(j,i) << 16);         
        }  
    }  
  return CLAHE_GO;
}

我自己写的main函数

int main()
{
    Mat src = imread("12.jpg");
    Mat original= imread("12.jpg");
    //cvtColor(src,gray,COLOR_BGR2GRAY);
    std::vector channels(3);
    cv::split(src, channels);


    channels.at(0) = claheGO(channels.at(0));
    channels.at(1) = claheGO(channels.at(1));
    channels.at(2) = claheGO(channels.at(2));
    merge(channels, src);
    imshow("original", original);
    imshow("final", src);
    //imwrite("RGB合并", src);
    //imwrite("gray", src);
    cv::waitKey(0);
    //destroyAllWindows();

    return 0;
}

你可能感兴趣的:(opencv)