muduo的定时器由三个类实现,TimerId、Timer、TimerQueue。
1、采用timer_create函数得到定时器对象
timerfd_create把时间变成了一个文件描述符,该“文件”在定时器超时的那一刻变得可读,这样就能很方便的融入到select/poll框架中,用统一的方式来处理I/O和超时事件,这正是Reactor模式的长处。
2、Timer类
Timer是对定时器的高层次抽象,封装了定时器的一些参数,例如超时回调函数、超时时间、超时时间间隔、定时器是否重复、定时器的序列号。其函数大都是设置这些参数,run()用来调用回调函数,restart()用来重启定时器(如果设置为重复)。
class Timer : boost::noncopyable
{
public:
void run() const //run函数来调用回调函数
{
callback_();
}
Timestamp expiration() const { return expiration_; }
bool repeat() const { return repeat_; }
int64_t sequence() const { return sequence_; }
void restart(Timestamp now);
static int64_t numCreated() { return s_numCreated_.get(); }
private:
const TimerCallback callback_;//超时回调函数
Timestamp expiration_; //超时时间
const double interval_; //超时时间间隔
const bool repeat_; //定时器是否重复
const int64_t sequence_; //定时器的序列号
static AtomicInt64 s_numCreated_;
};
//重复定时
void Timer::restart(Timestamp now)
{
if (repeat_)//定时器是否重复
{
expiration_ = addTime(now, interval_);//计算超时时间
}
else
{
expiration_ = Timestamp::invalid();//return Timestamp()获取一个无效时间
}
}
3、TimerQueue
TimerQueue的接口很简单,只有两个函数addTimer()和cancel()。它的内部有channel,和timerfd相关联。添加新的Timer后,在超时后,timerfd可读,会处理channel事件,之后调用Timer的回调函数;在timerfd的事件处理后,还有检查一遍超时定时器,如果其属性为重复还有再次添加到定时器集合中。
class TimerQueue : boost::noncopyable
{
public:
TimerQueue(EventLoop* loop);
~TimerQueue();
///
/// Schedules the callback to be run at given time,
/// repeats if @c interval > 0.0.
///
/// Must be thread safe. Usually be called from other threads.
// 一定是线程安全的,可以跨线程调用。通常情况下被其它线程调用。
TimerId addTimer(const TimerCallback& cb,
Timestamp when,
double interval);
void cancel(TimerId timerId);
private:
// FIXME: use unique_ptr instead of raw pointers.
// unique_ptr是C++ 11标准的一个独享所有权的智能指针
// 无法得到指向同一对象的两个unique_ptr指针
// 但可以进行移动构造与移动赋值操作,即所有权可以移动到另一个对象(而非拷贝构造)
typedef std::pair Entry;
typedef std::set TimerList;
typedef std::pair ActiveTimer;
typedef std::set ActiveTimerSet;
// 以下成员函数只可能在其所属的I/O线程中调用,因而不必加锁。
// 服务器性能杀手之一是锁竞争,所以要尽可能少用锁
void addTimerInLoop(Timer* timer);
void cancelInLoop(TimerId timerId);
// called when timerfd alarms
void handleRead();
// move out all expired timers
// 返回超时的定时器列表
std::vector getExpired(Timestamp now);
void reset(const std::vector& expired, Timestamp now);
bool insert(Timer* timer);
EventLoop* loop_; // 所属EventLoop
const int timerfd_;
Channel timerfdChannel_;
// Timer list sorted by expiration
TimerList timers_; // timers_是按到期时间排序
// for cancel()
// timers_与activeTimers_保存的是相同的数据
// timers_是按到期时间排序,activeTimers_是按对象地址排序
ActiveTimerSet activeTimers_;
bool callingExpiredTimers_; /* atomic */
ActiveTimerSet cancelingTimers_; // 保存的是被取消的定时器
};
//.cpp
void resetTimerfd(int timerfd, Timestamp expiration)
{
// wake up loop by timerfd_settime()
struct itimerspec newValue;
struct itimerspec oldValue;
bzero(&newValue, sizeof newValue);
bzero(&oldValue, sizeof oldValue);
newValue.it_value = howMuchTimeFromNow(expiration);
int ret = ::timerfd_settime(timerfd, 0, &newValue, &oldValue);//启动和停止定时器;0表示相对时间,第三个参数视为相对于调用timerfd_settime()时间点的相对时间,第四个返回定时器的前一设置
if (ret)
{
LOG_SYSERR << "timerfd_settime()";
}
}
bool TimerQueue::insert(Timer* timer)
{
loop_->assertInLoopThread();
assert(timers_.size() == activeTimers_.size());
bool earliestChanged = false;
Timestamp when = timer->expiration();//获取定时时间
TimerList::iterator it = timers_.begin();//获取定时列表中的迭代器
if (it == timers_.end() || when < it->first)//判断定时列表是否为空或者当前插入时间是否小于列表中的第一个
{
earliestChanged = true;
}
//插入两个时间列表中TimerList,ActiveTimerSet
{
std::pair result
= timers_.insert(Entry(when, timer));
assert(result.second); (void)result;
}
{
std::pair result
= activeTimers_.insert(ActiveTimer(timer, timer->sequence()));
assert(result.second); (void)result;
}
assert(timers_.size() == activeTimers_.size());
return earliestChanged;
}
//添加定时器到列表
void TimerQueue::addTimerInLoop(Timer* timer)
{
loop_->assertInLoopThread();
bool earliestChanged = insert(timer);//插入到定时列表中
if (earliestChanged)
{
resetTimerfd(timerfd_, timer->expiration());//定时列表为空或插入的时间比定时列表中的小更新定时器定时时间
}
}
//获取超时时间,并保存在vector中
std::vector TimerQueue::getExpired(Timestamp now)
{
assert(timers_.size() == activeTimers_.size());
std::vector expired;
Entry sentry(now, reinterpret_cast(UINTPTR_MAX));
TimerList::iterator end = timers_.lower_bound(sentry);//最后一个小于指定时间的下一个位置
assert(end == timers_.end() || now < end->first);
std::copy(timers_.begin(), end, back_inserter(expired));//将满足超时的Entry拷贝到expired中
timers_.erase(timers_.begin(), end);//在timers_列表中删除
for (std::vector::iterator it = expired.begin();
it != expired.end(); ++it) //将满足超时条件的timer从activeTimers_删去
{
ActiveTimer timer(it->second, it->second->sequence());
size_t n = activeTimers_.erase(timer);
assert(n == 1); (void)n;
}
assert(timers_.size() == activeTimers_.size());
return expired; //返回满足超时的Entry的vector
}
void TimerQueue::reset(const std::vector& expired, Timestamp now)
{
Timestamp nextExpire;
//遍历超时时间数组,查找每一个timer是否设置为repeat且该定时器没有被放在cancelingTimers_中
for (std::vector::const_iterator it = expired.begin();
it != expired.end(); ++it)
{
ActiveTimer timer(it->second, it->second->sequence());
if (it->second->repeat()
&& cancelingTimers_.find(timer) == cancelingTimers_.end())
{
//满足条件,更新定时器启动时间
it->second->restart(now);
//将其放入列表中
insert(it->second);
}
else //不满足条件删除timer
{
// FIXME move to a free list
delete it->second; // FIXME: no delete please
}
}
if (!timers_.empty())//最后判断timers_是否为空,不为空将第一个元素的值的expiration取出。
{
nextExpire = timers_.begin()->second->expiration();
}
if (nextExpire.valid())
{
resetTimerfd(timerfd_, nextExpire);
}
}
//chanel的回调函数,判断timerfd是可读,这也就是在插入定时时间是更新timerfd的原因
void TimerQueue::handleRead()
{
loop_->assertInLoopThread();
Timestamp now(Timestamp::now());//获取当前时间
readTimerfd(timerfd_, now);//判断是否可读,主要是通过read(timerfd, &howmany, sizeof howmany)不可读则阻塞
std::vector expired = getExpired(now);//获取超时timer,
callingExpiredTimers_ = true;
cancelingTimers_.clear();
// safe to callback outside critical section
for (std::vector::iterator it = expired.begin();//对每一个超时的timer执行对应的回调函数
it != expired.end(); ++it)
{
it->second->run();
}
callingExpiredTimers_ = false;
reset(expired, now);
}
//取消
void TimerQueue::cancelInLoop(TimerId timerId)
{
loop_->assertInLoopThread();
assert(timers_.size() == activeTimers_.size());
ActiveTimer timer(timerId.timer_, timerId.sequence_);
ActiveTimerSet::iterator it = activeTimers_.find(timer);//在活跃列表中查找到对应的项
if (it != activeTimers_.end())
{
//将其在两个列表中删除
size_t n = timers_.erase(Entry(it->first->expiration(), it->first));
assert(n == 1); (void)n;
delete it->first; // FIXME: no delete please
activeTimers_.erase(it);
}
else if (callingExpiredTimers_) //若不在判断callingExpiredTimers_
{
cancelingTimers_.insert(timer);//说明其在超时处理中从activeTimers_中取出,因此,把它插入
//cancelingTimers_
}
assert(timers_.size() == activeTimers_.size());
}