前面写了个lru缓存,适用于单线程的场景。多线程实现缓存的思路有很多种,有基于ttl淘汰策略的,有基于lru淘汰实现的,而在淘汰的方式也有很多选择,如果选用Concurrenthashmap,可以很好的基于ttl淘汰策略,具体实现是另开一个守护线程,定时淘汰ConcurrenthashMap中的过期键,而在使用lru淘汰策略时则需要额外借助辅助结构双向链表,需要额外的同步操作,由于在本文之前实现了一个lru缓存算法https://blog.csdn.net/qq_32459653/article/details/82766468,故放弃使用现有的Concurrenthashmap结构
模仿jdk1.7Concurrenthashmap结构的实现,实现自己的一个同步lru缓存,实现如下
package Inter.other;
/**
* 缓存通用实现接口接口
* Created by lin on 2018/9/19.
*/
public interface Cache {
V get(K key);
void set(K key, V value);
void clear();
int size();
/**
* 该方法,专门为segmentCache设计,
*
* @return
*/
void removeLast();
}
package Inter.other;
import java.util.HashMap;
import java.util.Map;
/**
* 缓存算法的具体实现
* Created by lin on 2018/9/16.
* 时间复杂度为O(1)的一个缓存
*/
public class LRUCache implements Cache {
// private KeyGenerationStrategy keyGenerationStrategy;
//默认容量大小
private static final int DEFAULT_CAPACITY = 8;
/* 缓存容量的大小 */
private volatile int capacity;
/* 缓存已使用的容量 */
private volatile int size;
/* 为了实现快速寻找,这里使用map,查找时间复杂度为O(1)*/
private volatile Map> map = new HashMap>();
/* 为了实现快速替换,这里使用链表,删除或者加入时间复杂度为O(1)*/
private volatile Node head;
private volatile Node tail;
/**
* 初始化
*
* @param capacity
*/
public LRUCache(int capacity) {
// map = new HashMap<>();
if (capacity <= 0) {
capacity = DEFAULT_CAPACITY;
}
this.capacity = capacity;
this.head = new Node(null, null, null);
this.tail = new Node(head, null, null);
head.next = tail;
}
public LRUCache() {
this(DEFAULT_CAPACITY);
}
/**
* 从缓存中获取指定值,没有返回空
*
* @param
* @param
* @return
*/
public V get(K key) {
Node node = (Node) map.get(key);
if (node == null) {
return null;
} else {
moveToFirst(node);
return node.value;
}
}
/**
* 指定节点添加到缓存中
*
* @param key value值对应的键
* @param value 存放的值
*/
public void set(K key, V value) {
Node node = new Node(value, key);
//缓存容量未满,不需要淘汰,直接添加到最后一个
if (size <= capacity) {
node.prev = head;
node.next = head.next;
head.next.prev = node;
head.next = node;
map.put(node.key, node);
size++;
} else {//容量已满,淘汰最后一个节点即可
// map.put((K)node.key, node);
Node delNode = tail.prev;
delNode.prev.next = node;
node.prev = delNode.prev;
node.next = tail;
tail.prev = node;
delNode.next = null;
delNode.prev = null;
delNode = null;
map.remove(delNode.key);
}
}
//清空缓存
public void clear() {
this.head = new Node(null, null, null);
this.tail = new Node(head, null, null);
head.next = tail;
size = 0;
}
public int size() {
return this.size;
}
public void removeLast() {
if (size() == 0) {
return;
}
Node delNode = tail.prev;
Node node = delNode.prev;
tail.prev = node;
node.next = tail;
delNode.next = null;
delNode.prev = null;
delNode = null;
map.remove(delNode.key);
}
/**
* 当节点被访问时需要放置到缓存最前面
*
* @param node
*/
private void moveToFirst(Node node) {
//validationIsSwap();
if (node == head.next) {
return;
}
Node nodePrev = node.prev;
Node nodeNext = node.next;
Node beMoved = head.next;// 头节点的下一个节点
head.next = node;
node.prev = head;
node.next = beMoved;
beMoved.prev = node;
nodePrev.next = nodeNext;
nodeNext.prev = nodePrev;
}
/**
* 确定是否可以交换,如果size小于等于1 则没必要
*
* private void validationIsSwap() {
* if (size <= 1) {
* throw new IllegalArgumentException("缓存容量不大于1,不能进行该操作");
* }
* }
*/
public static void main(String[] args) {
LRUCache lruCache = new LRUCache(20);
KeyGenerationStrategy keyGenerationStrategy = new SimpleKeyGenerationStrategy();
String key1 = keyGenerationStrategy.generationKey(1);
String key2 = keyGenerationStrategy.generationKey(2);
String key3 = keyGenerationStrategy.generationKey(3);
lruCache.set(key1, 1);
lruCache.set(key2, 2);
lruCache.set(key3, 3);
System.out.println(lruCache.get(key1) + "");
;
System.out.println(lruCache.get(key2) + "");
;
System.out.println(lruCache.get(key3) + "");
;
System.out.println(lruCache.get(key1) + "");
;
// lruCache.swapAndFirst(node2);
Node head = lruCache.head;
//第一个
head = head.next;
System.out.println(head);
//第二个
head = head.next;
System.out.println(head);
//第三个
head = head.next;
System.out.println(head);
// lruCache.set(node1);
}
private Node getHead() {
return this.head;
}
}
package Inter.other;
/**
* 链表节点的定义
* Created by lin on 2018/9/16.
*/
public class Node {
final V value;
final K key;//表示该节点的键;
volatile Node next;
volatile Node prev;
public Node(V value, K key) {
this.value = value;
this.key = key;
}
public Node(Node prev, Node next, V value) {
this.prev = prev;
this.next = next;
this.value = value;
}
public K getKey() {
return this.key;
}
@Override
public String toString() {
return "prev:" + prev.value + "当前节点" + this.value + "next:" + next.value;
}
}
package Inter.other;
/**
* 键值生成策略接口
* Created by lin on 2018/9/19.
*/
public interface KeyGenerationStrategy {
K generationKey(V value);
}
package Inter.other;
/**
* 简单的键值生成
* Created by lin on 2018/9/19.
*/
public class SimpleKeyGenerationStrategy implements KeyGenerationStrategy {
public K generationKey(V value) {
return (K) value.toString();
}
}
到这里为止 与单线程的lru实现都差不多,只是将一些字段变为用volatile,或final修饰了,并增加了removelast方法;
接下来就模仿jdk1.7ConcurrentHashmap实现并发量高,线程安全的缓存,
package Inter.other;
import lombok.Getter;
import lombok.Setter;
import java.io.Serializable;
import java.util.Random;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
* Created by lin on 2018/9/20.
*/
public abstract class SegmentCache implements Cache {
protected CacheFactory cacheFactory;
protected final Random random; //主要用于淘汰时,随机选用一个桶淘汰
/*桶的数量 ,其大小可以任意指定,不一定非要2的整数幂*/
@Getter
private final int segmentCount;
@Getter
protected volatile AtomicInteger size;
//缓存容量大小,可以改变,但不建议那么做
@Setter
protected volatile int capacity;
/**
* 采用分段锁锁的思路,这里每一个cache都有一个
* ReadWriteLock ,在操作cache时,需要获取对应的ReadWriteLock
*/
protected final Segment[] caches;
private static final int DEFAULT_SEGMENTCOUNT = Runtime.getRuntime().availableProcessors();
/**
* 初始化一个segmentCache缓存,考虑到缓存可能分布不均匀,故给
* 每个segment分配的容量大小均是capacity的大小,实际容量由SegmentCache
* 控制,给每个segment的容量设置为capacity并不会浪费内存,因为并没有实际分配
* 内存空间,仅仅是一个阈值
*
* @param segmentCount 分段的数量
* @param capacity 容量大小
* @param cache 默认的缓存实现
*/
public SegmentCache(int segmentCount, int capacity, Cache cache) {
if (capacity <= 0) {
throw new IllegalArgumentException("capacity 必须大于0");
}
if (segmentCount <= 0) {
throw new IllegalArgumentException("segmentCount 必须大于0");
}
this.segmentCount = segmentCount;
caches = new Segment[segmentCount];
this.capacity = capacity;
setCacheFactory();//设置缓存工厂
for (int i = 0; i < segmentCount; i++) {
cache = cacheFactory.getCache(cache.getClass().getSimpleName(), capacity);
caches[i] = new Segment(cache, capacity);
}
random = new Random(segmentCount);
}
public SegmentCache(int capacity, Cache cache) {
this(DEFAULT_SEGMENTCOUNT, capacity, cache);
}
public V get(K key) {
int place = getSegmentPlace(key);
Segment cache = (Segment) caches[place];
return cache.get(key);
}
public void set(K key, V value) {
int place = getSegmentPlace(key);
Segment cache = caches[place];
while (size.get() < capacity) {//小于
int nowSize = size.get();
if (size.compareAndSet(nowSize, nowSize + 1)) { //先扩容,在添加
cache.set(key, value);
break;
}
continue;
}
weekout();
//递归调用自身重新设置
set(key, value);
}
/**
* 淘汰键值,
*/
public abstract void weekout();
public void clear() {
}
/**
* 返回缓存中已存在的键值得大小
*
* @return
*/
public int size() {
return size.get();
}
static final class Segment extends ReentrantReadWriteLock implements Serializable, Cache {
transient volatile int size; // segment中元素的的数量
transient volatile int capacity; // 缓存容量的大小
transient int modCount; //对的大小造成影响的操作的数量(比如put或者remove操作)
private volatile Cache cache; //segment的缓存结构
public Segment(Cache cache, int capacity) {
this.cache = cache;
this.capacity = capacity;
}
public V get(K key) {
readLock().lock();
try {
return cache.get(key);
} finally {
readLock().unlock();
}
}
public void set(K key, V value) {
writeLock().lock();
try {
cache.set(key, value);
} finally {
writeLock().unlock();
}
}
public void clear() {
writeLock().lock();
try {
cache.clear();
} finally {
writeLock().unlock();
}
}
public int size() {
return cache.size();
}
public void removeLast() {
writeLock().lock();
try {
cache.removeLast();
} finally {
writeLock().unlock();
}
}
}
/**
* 考虑到事实情况,segmentCount可以任意指定大小,
*
* @param key
* @return
*/
private int getSegmentPlace(K key) {
return key.hashCode() % segmentCount;
}
public abstract void setCacheFactory();
}
缓存工厂,用于决定,使用哪种基本的缓存策略
package Inter.other;
/**
* Created by lin on 2018/9/20.
*/
public interface CacheFactory {
Cache getCache(String name, int capacity);
}
package Inter.other;
/**
* Created by lin on 2018/9/20.
*/
public class SimpleCacheFactory implements CacheFactory {
public Cache getCache(String name, int capacity) {
if (name.equalsIgnoreCase("lruCache")) {
return new LRUCache(capacity);
}
throw new IllegalArgumentException("没有该种缓存");
}
}
package Inter.other;
/**
* Created by lin on 2018/9/20.
*/
public class SimpleSegmentCache extends SegmentCache {
public SimpleSegmentCache(int capacity, Cache cache) {
super(capacity, cache);
}
public void removeLast() {
weekout();
}
public void weekout() {
while (true) {
if (size.get() < capacity) {
break;
}
int weedSegmentPlace = random.nextInt();
Segment weedSegment = caches[weedSegmentPlace];
if (weedSegment.size() > 0) {
weedSegment.writeLock().lock();
try {
if (size.get() < capacity) {
return;
}
if (weedSegment.size() > 0) {
weedSegment.removeLast();
size.decrementAndGet();
break;
}
} finally {
weedSegment.writeLock().unlock();
}
}
}
}
public void setCacheFactory() {
this.cacheFactory = new SimpleCacheFactory();
}
}
另外对lru算法非常感兴趣的同学可以看一些大牛写的线程安全的高并发 lru缓存算法,具体地址如下https://blog.csdn.net/njchenyi/article/details/8046914