MySQL 性能优化的最佳20多条经验分享
http://www.jb51.net/article/24392.htm
今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显。关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我们程序员需要去关注的事情。
..当我们去设计数据库表结构,对操作数据库时(尤其是查表时的SQL语句),我们都需要注意数据操作的性能。这里,我们不会讲过多的SQL语句的优化,而只是针对MySQL这一Web应用最多的数据库。希望下面的这些优化技巧对你有用。
1. 为查询缓存优化你的查询
大多数的MySQL服务器都开启了查询缓存。这是提高性最有效的方法之一,而且这是被MySQL的数据库引擎处理的。当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存中,这样,后续的相同的查询就不用操作表而直接访问缓存结果了。
这里最主要的问题是,对于程序员来说,这个事情是很容易被忽略的。因为,我们某些查询语句会让MySQL不使用缓存。请看下面的示例:
复制代码 代码如下:
// 查询缓存不开启
$r = mysql_query("SELECT username FROM user WHERE signup_date >= CURDATE()");
// 开启查询缓存
$today = date("Y-m-d");
$r = mysql_query("SELECT username FROM user WHERE signup_date >= '$today'");
上面两条SQL语句的差别就是 CURDATE() ,MySQL的查询缓存对这个函数不起作用。所以,像 NOW() 和 RAND() 或是其它的诸如此类的SQL函数都不会开启查询缓存,因为这些函数的返回是会不定的易变的。所以,你所需要的就是用一个变量来代替MySQL的函数,从而开启缓存。
2. EXPLAIN 你的 SELECT 查询
使用 EXPLAIN 关键字可以让你知道MySQL是如何处理你的SQL语句的。这可以帮你分析你的查询语句或是表结构的性能瓶颈。
EXPLAIN 的查询结果还会告诉你你的索引主键被如何利用的,你的数据表是如何被搜索和排序的……等等,等等。
挑一个你的SELECT语句(推荐挑选那个最复杂的,有多表联接的),把关键字EXPLAIN加到前面。你可以使用phpmyadmin来做这个事。然后,你会看到一张表格。下面的这个示例中,我们忘记加上了group_id索引,并且有表联接:
当我们为 group_id 字段加上索引后:
我们可以看到,前一个结果显示搜索了 7883 行,而后一个只是搜索了两个表的 9 和 16 行。查看rows列可以让我们找到潜在的性能问题。
3. 当只要一行数据时使用 LIMIT 1
当你查询表的有些时候,你已经知道结果只会有一条结果,但因为你可能需要去fetch游标,或是你也许会去检查返回的记录数。
在这种情况下,加上 LIMIT 1 可以增加性能。这样一样,MySQL数据库引擎会在找到一条数据后停止搜索,而不是继续往后查少下一条符合记录的数据。
下面的示例,只是为了找一下是否有“中国”的用户,很明显,后面的会比前面的更有效率。(请注意,第一条中是Select *,第二条是Select 1)
复制代码 代码如下:
// 没有效率的:
$r = mysql_query("SELECT * FROM user WHERE country = 'China'");
if (mysql_num_rows($r) > 0) {
// ...
}
// 有效率的:
$r = mysql_query("SELECT 1 FROM user WHERE country = 'China' LIMIT 1");
if (mysql_num_rows($r) > 0) {
// ...
}
4. 为搜索字段建索引
索引并不一定就是给主键或是唯一的字段。如果在你的表中,有某个字段你总要会经常用来做搜索,那么,请为其建立索引吧。
从上图你可以看到那个搜索字串 “last_name LIKE ‘a%'”,一个是建了索引,一个是没有索引,性能差了4倍左右。
另外,你应该也需要知道什么样的搜索是不能使用正常的索引的。例如,当你需要在一篇大的文章中搜索一个词时,如: “WHERE post_content LIKE ‘%apple%'”,索引可能是没有意义的。你可能需要使用MySQL全文索引 或是自己做一个索引(比如说:搜索关键词或是Tag什么的)
5. 在Join表的时候使用相当类型的例,并将其索引
如果你的应用程序有很多 JOIN 查询,你应该确认两个表中Join的字段是被建过索引的。这样,MySQL内部会启动为你优化Join的SQL语句的机制。
而且,这些被用来Join的字段,应该是相同的类型的。例如:如果你要把 DECIMAL 字段和一个 INT 字段Join在一起,MySQL就无法使用它们的索引。对于那些STRING类型,还需要有相同的字符集才行。(两个表的字符集有可能不一样)
复制代码 代码如下:
// 在state中查找company
$r = mysql_query("SELECT company_name FROM users
LEFT JOIN companies ON (users.state = companies.state)
WHERE users.id = $user_id");
// 两个 state 字段应该是被建过索引的,而且应该是相当的类型,相同的字符集。
6. 千万不要 ORDER BY RAND()
想打乱返回的数据行?随机挑一个数据?真不知道谁发明了这种用法,但很多新手很喜欢这样用。但你确不了解这样做有多么可怕的性能问题。
如果你真的想把返回的数据行打乱了,你有N种方法可以达到这个目的。这样使用只让你的数据库的性能呈指数级的下降。这里的问题是:MySQL会不得不去执行RAND()函数(很耗CPU时间),而且这是为了每一行记录去记行,然后再对其排序。就算是你用了Limit 1也无济于事(因为要排序)
下面的示例是随机挑一条记录
复制代码 代码如下:
// 千万不要这样做:
$r = mysql_query("SELECT username FROM user ORDER BY RAND() LIMIT 1");
// 这要会更好:
$r = mysql_query("SELECT count(*) FROM user");
$d = mysql_fetch_row($r);
$rand = mt_rand(0,$d[0] - 1);
$r = mysql_query("SELECT username FROM user LIMIT $rand, 1");
7. 避免 SELECT *
从数据库里读出越多的数据,那么查询就会变得越慢。并且,如果你的数据库服务器和WEB服务器是两台独立的服务器的话,这还会增加网络传输的负载。
所以,你应该养成一个需要什么就取什么的好的习惯。
复制代码 代码如下:
// 不推荐
$r = mysql_query("SELECT * FROM user WHERE user_id = 1");
$d = mysql_fetch_assoc($r);
echo "Welcome {$d['username']}";
// 推荐
$r = mysql_query("SELECT username FROM user WHERE user_id = 1");
$d = mysql_fetch_assoc($r);
echo "Welcome {$d['username']}";
8. 永远为每张表设置一个ID
我们应该为数据库里的每张表都设置一个ID做为其主键,而且最好的是一个INT型的(推荐使用UNSIGNED),并设置上自动增加的 AUTO_INCREMENT标志。
就算是你 users 表有一个主键叫 “email”的字段,你也别让它成为主键。使用 VARCHAR 类型来当主键会使用得性能下降。另外,在你的程序中,你应该使用表的ID来构造你的数据结构。
而且,在MySQL数据引擎下,还有一些操作需要使用主键,在这些情况下,主键的性能和设置变得非常重要,比如,集群,分区……
在这里,只有一个情况是例外,那就是“关联表”的“外键”,也就是说,这个表的主键,通过若干个别的表的主键构成。我们把这个情况叫做“外键”。比如:有一个“学生表”有学生的ID,有一个“课程表”有课程ID,那么,“成绩表”就是“关联表”了,其关联了学生表和课程表,在成绩表中,学生ID和课程ID叫“外键”其共同组成主键。
9. 使用 ENUM 而不是 VARCHAR
ENUM 类型是非常快和紧凑的。在实际上,其保存的是 TINYINT,但其外表上显示为字符串。这样一来,用这个字段来做一些选项列表变得相当的完美。
如果你有一个字段,比如“性别”,“国家”,“民族”,“状态”或“部门”,你知道这些字段的取值是有限而且固定的,那么,你应该使用 ENUM 而不是 VARCHAR。
MySQL也有一个“建议”(见第十条)告诉你怎么去重新组织你的表结构。当你有一个 VARCHAR 字段时,这个建议会告诉你把其改成 ENUM 类型。使用 PROCEDURE ANALYSE() 你可以得到相关的建议。
10. 从 PROCEDURE ANALYSE() 取得建议
PROCEDURE ANALYSE() 会让 MySQL 帮你去分析你的字段和其实际的数据,并会给你一些有用的建议。只有表中有实际的数据,这些建议才会变得有用,因为要做一些大的决定是需要有数据作为基础的。
例如,如果你创建了一个 INT 字段作为你的主键,然而并没有太多的数据,那么,PROCEDURE ANALYSE()会建议你把这个字段的类型改成 MEDIUMINT 。或是你使用了一个 VARCHAR 字段,因为数据不多,你可能会得到一个让你把它改成 ENUM 的建议。这些建议,都是可能因为数据不够多,所以决策做得就不够准。
在phpmyadmin里,你可以在查看表时,点击 “Propose table structure” 来查看这些建议
一定要注意,这些只是建议,只有当你的表里的数据越来越多时,这些建议才会变得准确。一定要记住,你才是最终做决定的人。
11. 尽可能的使用 NOT NULL
除非你有一个很特别的原因去使用 NULL 值,你应该总是让你的字段保持 NOT NULL。这看起来好像有点争议,请往下看。
首先,问问你自己“Empty”和“NULL”有多大的区别(如果是INT,那就是0和NULL)?如果你觉得它们之间没有什么区别,那么你就不要使用NULL。(你知道吗?在 Oracle 里,NULL 和 Empty 的字符串是一样的!)
不要以为 NULL 不需要空间,其需要额外的空间,并且,在你进行比较的时候,你的程序会更复杂。 当然,这里并不是说你就不能使用NULL了,现实情况是很复杂的,依然会有些情况下,你需要使用NULL值。
下面摘自MySQL自己的文档:
“NULL columns require additional space in the row to record whether their values are NULL. For MyISAM tables, each NULL column takes one bit extra, rounded up to the nearest byte.”
12. Prepared Statements
Prepared Statements很像存储过程,是一种运行在后台的SQL语句集合,我们可以从使用 prepared statements 获得很多好处,无论是性能问题还是安全问题。
Prepared Statements 可以检查一些你绑定好的变量,这样可以保护你的程序不会受到“SQL注入式”攻击。当然,你也可以手动地检查你的这些变量,然而,手动的检查容易出问题,而且很经常会被程序员忘了。当我们使用一些framework或是ORM的时候,这样的问题会好一些。
在性能方面,当一个相同的查询被使用多次的时候,这会为你带来可观的性能优势。你可以给这些Prepared Statements定义一些参数,而MySQL只会解析一次。
虽然最新版本的MySQL在传输Prepared Statements是使用二进制形势,所以这会使得网络传输非常有效率。
当然,也有一些情况下,我们需要避免使用Prepared Statements,因为其不支持查询缓存。但据说版本5.1后支持了。
在PHP中要使用prepared statements,你可以查看其使用手册:mysqli 扩展 或是使用数据库抽象层,如: PDO.
复制代码 代码如下:
// 创建 prepared statement
if ($stmt = $mysqli->prepare("SELECT username FROM user WHERE state=?")) {
// 绑定参数
$stmt->bind_param("s", $state);
// 执行
$stmt->execute();
// 绑定结果
$stmt->bind_result($username);
// 移动游标
$stmt->fetch();
printf("%s is from %s\n", $username, $state);
$stmt->close();
}
13. 无缓冲的查询
正常的情况下,当你在当你在你的脚本中执行一个SQL语句的时候,你的程序会停在那里直到没这个SQL语句返回,然后你的程序再往下继续执行。你可以使用无缓冲查询来改变这个行为。
关于这个事情,在PHP的文档中有一个非常不错的说明: mysql_unbuffered_query() 函数:
“mysql_unbuffered_query() sends the SQL query query to MySQL without automatically fetching and buffering the result rows as mysql_query() does. This saves a considerable amount of memory with SQL queries that produce large result sets, and you can start working on the result set immediately after the first row has been retrieved as you don't have to wait until the complete SQL query has been performed.”
上面那句话翻译过来是说,mysql_unbuffered_query() 发送一个SQL语句到MySQL而并不像mysql_query()一样去自动fethch和缓存结果。这会相当节约很多可观的内存,尤其是那些会产生大量结果的查询语句,并且,你不需要等到所有的结果都返回,只需要第一行数据返回的时候,你就可以开始马上开始工作于查询结果了。
然而,这会有一些限制。因为你要么把所有行都读走,或是你要在进行下一次的查询前调用 mysql_free_result() 清除结果。而且, mysql_num_rows() 或 mysql_data_seek() 将无法使用。所以,是否使用无缓冲的查询你需要仔细考虑。
14. 把IP地址存成 UNSIGNED INT
很多程序员都会创建一个 VARCHAR(15) 字段来存放字符串形式的IP而不是整形的IP。如果你用整形来存放,只需要4个字节,并且你可以有定长的字段。而且,这会为你带来查询上的优势,尤其是当你需要使用这样的WHERE条件:IP between ip1 and ip2。
我们必需要使用UNSIGNED INT,因为 IP地址会使用整个32位的无符号整形。
而你的查询,你可以使用 INET_ATON() 来把一个字符串IP转成一个整形,并使用 INET_NTOA() 把一个整形转成一个字符串IP。在PHP中,也有这样的函数 ip2long() 和 long2ip()。
1 $r = "UPDATE users SET ip = INET_ATON('{$_SERVER['REMOTE_ADDR']}') WHERE user_id = $user_id";
15. 固定长度的表会更快
如果表中的所有字段都是“固定长度”的,整个表会被认为是 “static” 或 “fixed-length”。 例如,表中没有如下类型的字段: VARCHAR,TEXT,BLOB。只要你包括了其中一个这些字段,那么这个表就不是“固定长度静态表”了,这样,MySQL 引擎会用另一种方法来处理。
固定长度的表会提高性能,因为MySQL搜寻得会更快一些,因为这些固定的长度是很容易计算下一个数据的偏移量的,所以读取的自然也会很快。而如果字段不是定长的,那么,每一次要找下一条的话,需要程序找到主键。
并且,固定长度的表也更容易被缓存和重建。不过,唯一的副作用是,固定长度的字段会浪费一些空间,因为定长的字段无论你用不用,他都是要分配那么多的空间。
使用“垂直分割”技术(见下一条),你可以分割你的表成为两个一个是定长的,一个则是不定长的。
16. 垂直分割
“垂直分割”是一种把数据库中的表按列变成几张表的方法,这样可以降低表的复杂度和字段的数目,从而达到优化的目的。(以前,在银行做过项目,见过一张表有100多个字段,很恐怖)
示例一:在Users表中有一个字段是家庭地址,这个字段是可选字段,相比起,而且你在数据库操作的时候除了个人信息外,你并不需要经常读取或是改写这个字段。那么,为什么不把他放到另外一张表中呢? 这样会让你的表有更好的性能,大家想想是不是,大量的时候,我对于用户表来说,只有用户ID,用户名,口令,用户角色等会被经常使用。小一点的表总是会有好的性能。
示例二: 你有一个叫 “last_login” 的字段,它会在每次用户登录时被更新。但是,每次更新时会导致该表的查询缓存被清空。所以,你可以把这个字段放到另一个表中,这样就不会影响你对用户 ID,用户名,用户角色的不停地读取了,因为查询缓存会帮你增加很多性能。
另外,你需要注意的是,这些被分出去的字段所形成的表,你不会经常性地去Join他们,不然的话,这样的性能会比不分割时还要差,而且,会是极数级的下降。
17. 拆分大的 DELETE 或 INSERT 语句
如果你需要在一个在线的网站上去执行一个大的 DELETE 或 INSERT 查询,你需要非常小心,要避免你的操作让你的整个网站停止相应。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。
Apache 会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也不希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是内存。
如果你把你的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程/线程,数据库链接,打开的文件数,可能不仅仅会让你泊WEB服务Crash,还可能会让你的整台服务器马上掛了。
所以,如果你有一个大的处理,你定你一定把其拆分,使用 LIMIT 条件是一个好的方法。下面是一个示例:
复制代码 代码如下:
while (1) {
//每次只做1000条
mysql_query("DELETE FROM logs WHERE log_date <= '2009-11-01' LIMIT 1000");
if (mysql_affected_rows() == 0) {
// 没得可删了,退出!
break;
}
// 每次都要休息一会儿
usleep(50000);
}
18. 越小的列会越快
对于大多数的数据库引擎来说,硬盘操作可能是最重大的瓶颈。所以,把你的数据变得紧凑会对这种情况非常有帮助,因为这减少了对硬盘的访问。
参看 MySQL 的文档 Storage Requirements 查看所有的数据类型。
如果一个表只会有几列罢了(比如说字典表,配置表),那么,我们就没有理由使用 INT 来做主键,使用 MEDIUMINT, SMALLINT 或是更小的 TINYINT 会更经济一些。如果你不需要记录时间,使用 DATE 要比 DATETIME 好得多。
当然,你也需要留够足够的扩展空间,不然,你日后来干这个事,你会死的很难看,参看Slashdot的例子(2009年11月06 日),一个简单的ALTER TABLE语句花了3个多小时,因为里面有一千六百万条数据。
19. 选择正确的存储引擎
在 MySQL 中有两个存储引擎 MyISAM 和 InnoDB,每个引擎都有利有弊。酷壳以前文章《MySQL: InnoDB 还是 MyISAM?》讨论和这个事情。
MyISAM 适合于一些需要大量查询的应用,但其对于有大量写操作并不是很好。甚至你只是需要update一个字段,整个表都会被锁起来,而别的进程,就算是读进程都无法操作直到读操作完成。另外,MyISAM 对于 SELECT COUNT(*) 这类的计算是超快无比的。
InnoDB 的趋势会是一个非常复杂的存储引擎,对于一些小的应用,它会比 MyISAM 还慢。他是它支持“行锁” ,于是在写操作比较多的时候,会更优秀。并且,他还支持更多的高级应用,比如:事务。
下面是MySQL的手册
* target=”_blank”MyISAM Storage Engine
* InnoDB Storage Engine
20. 使用一个对象关系映射器(Object Relational Mapper)
使用 ORM (Object Relational Mapper),你能够获得可靠的性能增涨。一个ORM可以做的所有事情,也能被手动的编写出来。但是,这需要一个高级专家。
ORM 的最重要的是“Lazy Loading”,也就是说,只有在需要的去取值的时候才会去真正的去做。但你也需要小心这种机制的副作用,因为这很有可能会因为要去创建很多很多小的查询反而会降低性能。
ORM 还可以把你的SQL语句打包成一个事务,这会比单独执行他们快得多得多。
目前,个人最喜欢的PHP的ORM是:Doctrine。
21. 小心“永久链接”
“永久链接”的目的是用来减少重新创建MySQL链接的次数。当一个链接被创建了,它会永远处在连接的状态,就算是数据库操作已经结束了。而且,自从我们的Apache开始重用它的子进程后——也就是说,下一次的HTTP请求会重用Apache的子进程,并重用相同的 MySQL 链接。
* PHP手册:mysql_pconnect()
在理论上来说,这听起来非常的不错。但是从个人经验(也是大多数人的)上来说,这个功能制造出来的麻烦事更多。因为,你只有有限的链接数,内存问题,文件句柄数,等等。
而且,Apache 运行在极端并行的环境中,会创建很多很多的了进程。这就是为什么这种“永久链接”的机制工作地不好的原因。在你决定要使用“永久链接”之前,你需要好好地考虑一下你的整个系统的架构。
========
MySQL性能优化总结
http://www.cnblogs.com/luxiaoxun/p/4694144.html
一、MySQL的主要适用场景
1、Web网站系统
2、日志记录系统
3、数据仓库系统
4、嵌入式系统
二、MySQL架构图:
三、MySQL存储引擎概述
1)MyISAM存储引擎
MyISAM存储引擎的表在数据库中,每一个表都被存放为三个以表名命名的物理文件。首先肯定会有任何存储引擎都不可缺少的存放表结构定义信息的.frm文件,另外还有.MYD和.MYI文件,分别存放了表的数据(.MYD)和索引数据(.MYI)。每个表都有且仅有这样三个文件做为MyISAM存储类型的表的存储,也就是说不管这个表有多少个索引,都是存放在同一个.MYI文件中。
MyISAM支持以下三种类型的索引:
1、B-Tree索引
B-Tree索引,顾名思义,就是所有的索引节点都按照balancetree的数据结构来存储,所有的索引数据节点都在叶节点。
2、R-Tree索引
R-Tree索引的存储方式和b-tree索引有一些区别,主要设计用于为存储空间和多维数据的字段做索引,所以目前的MySQL版本来说,也仅支持geometry类型的字段作索引。
3、Full-text索引
Full-text索引就是我们长说的全文索引,他的存储结构也是b-tree。主要是为了解决在我们需要用like查询的低效问题。
2)Innodb 存储引擎
1、支持事务安装
2、数据多版本读取
3、锁定机制的改进
4、实现外键
3)NDBCluster存储引擎
NDB存储引擎也叫NDBCluster存储引擎,主要用于MySQLCluster分布式集群环境,Cluster是MySQL从5.0版本才开始提供的新功能。
4)Merge存储引擎
MERGE存储引擎,在MySQL用户手册中也提到了,也被大家认识为MRG_MyISAM引擎。Why?因为MERGE存储引擎可以简单的理解为其功能就是实现了对结构相同的MyISAM表,通过一些特殊的包装对外提供一个单一的访问入口,以达到减小应用的复杂度的目的。要创建MERGE表,不仅仅基表的结构要完全一致,包括字段的顺序,基表的索引也必须完全一致。
5)Memory存储引擎
Memory存储引擎,通过名字就很容易让人知道,他是一个将数据存储在内存中的存储引擎。Memory存储引擎不会将任何数据存放到磁盘上,仅仅存放了一个表结构相关信息的.frm文件在磁盘上面。所以一旦MySQLCrash或者主机Crash之后,Memory的表就只剩下一个结构了。Memory表支持索引,并且同时支持Hash和B-Tree两种格式的索引。由于是存放在内存中,所以Memory都是按照定长的空间来存储数据的,而且不支持BLOB和TEXT类型的字段。Memory存储引擎实现页级锁定。
6)BDB存储引擎
BDB存储引擎全称为BerkeleyDB存储引擎,和Innodb一样,也不是MySQL自己开发实现的一个存储引擎,而是由SleepycatSoftware所提供,当然,也是开源存储引擎,同样支持事务安全。
7)FEDERATED存储引擎
FEDERATED存储引擎所实现的功能,和Oracle的DBLINK基本相似,主要用来提供对远程MySQL服务器上面的数据的访问接口。如果我们使用源码编译来安装MySQL,那么必须手工指定启用FEDERATED存储引擎才行,因为MySQL默认是不起用该存储引擎的。
8)ARCHIVE存储引擎
ARCHIVE存储引擎主要用于通过较小的存储空间来存放过期的很少访问的历史数据。ARCHIVE表不支持索引,通过一个.frm的结构定义文件,一个.ARZ的数据压缩文件还有一个.ARM的meta信息文件。由于其所存放的数据的特殊性,ARCHIVE表不支持删除,修改操
作,仅支持插入和查询操作。锁定机制为行级锁定。
9)BLACKHOLE存储引擎
BLACKHOLE存储引擎是一个非常有意思的存储引擎,功能恰如其名,就是一个“黑洞”。就像我们unix系统下面的“/dev/null”设备一样,不管我们写入任何信息,都是有去无回。
10)CSV存储引擎
CSV存储引擎实际上操作的就是一个标准的CSV文件,他不支持索引。起主要用途就是大家有些时候可能会需要通过数据库中的数据导出成一份报表文件,而CSV文件是很多软件都支持的一种较为标准的格式,所以我们可以通过先在数据库中建立一张CVS表,然后将生成的报表信息插入到该表,即可得到一份CSV报表文件了。
四、影响MySQLServer性能的相关因素
1商业需求对性能的影响
典型需求:一个论坛帖子总量的统计,要求:实时更新。
2系统架构及实现对性能的影响
以下几类数据都是不适合在数据库中存放的:
二进制多媒体数据
流水队列数据
超大文本数据
通过Cache技术来提高系统性能:
系统各种配置及规则数据;
活跃用户的基本信息数据;
活跃用户的个性化定制信息数据;
准实时的统计信息数据;
其他一些访问频繁但变更较少的数据;
3 Query语句对系统性能的影响
需求:取出某个group(假设id为1)下的用户编号(id),用户昵称(nick_name),并按照加入组的时间(user_group.gmt_create)来进行倒序排列,取出前20个。
解决方案一:
SELECT id,nick_name FROM user,user_group WHERE user_group.group_id=1 and user_group.user_id=user.id ORDER BY user_group.gmt_create desc limit 100,20;
解决方案二:
复制代码
SELECT user.id,user.nick_name FROM(
SELECT user_id
FROM user_group
WHERE user_group.group_id=1
ORDER BY gmt_create desc
limit 100,20)t,user
WHERE t.user_id=user.id;
复制代码
通过比较两个解决方案的执行计划,我们可以看到第一中解决方案中需要和user表参与Join的记录数MySQL通过统计数据估算出来是31156,也就是通过user_group表返回的所有满足group_id=1的记录数(系统中的实际数据是20000)。而第二种解决方案的执行计划中,user表参与Join的数据就只有20条,两者相差很大,我们认为第二中解决方案应该明显优于第一种解决方案。
4 Schema设计对系统的性能影响
尽量减少对数据库访问的请求。
尽量减少无用数据的查询请求。
5硬件环境对系统性能的影响
1、典型OLTP应用系统
对于各种数据库系统环境中大家最常见的OLTP系统,其特点是并发量大,整体数据量比较多,但每次访问的数据比较少,且访问的数据比较离散,活跃数据占总体数据的比例不是太大。对于这类系统的数据库实际上是最难维护,最难以优化的,对主机整体性能要求也是最高的。因为不仅访问量很高,数据量也不小。
针对上面的这些特点和分析,我们可以对OLTP的得出一个大致的方向。
虽然系统总体数据量较大,但是系统活跃数据在数据总量中所占的比例不大,那么我们可以通过扩大内存容量来尽可能多的将活跃数据cache到内存中;
虽然IO访问非常频繁,但是每次访问的数据量较少且很离散,那么我们对磁盘存储的要求是IOPS表现要很好,吞吐量是次要因素;
并发量很高,CPU每秒所要处理的请求自然也就很多,所以CPU处理能力需要比较强劲;
虽然与客户端的每次交互的数据量并不是特别大,但是网络交互非常频繁,所以主机与客户端交互的网络设备对流量能力也要求不能太弱。
2、典型OLAP应用系统
用于数据分析的OLAP系统的主要特点就是数据量非常大,并发访问不多,但每次访问所需要检索的数据量都比较多,而且数据访问相对较为集中,没有太明显的活跃数据概念。
基于OLAP系统的各种特点和相应的分析,针对OLAP系统硬件优化的大致策略如下:
数据量非常大,所以磁盘存储系统的单位容量需要尽量大一些;
单次访问数据量较大,而且访问数据比较集中,那么对IO系统的性能要求是需要有尽可能大的每秒IO吞吐量,所以应该选用每秒吞吐量尽可能大的磁盘;
虽然IO性能要求也比较高,但是并发请求较少,所以CPU处理能力较难成为性能瓶颈,所以CPU处理能力没有太苛刻的要求;
虽然每次请求的访问量很大,但是执行过程中的数据大都不会返回给客户端,最终返回给客户端的数据量都较小,所以和客户端交互的网络设备要求并不是太高;
此外,由于OLAP系统由于其每次运算过程较长,可以很好的并行化,所以一般的OLAP系统都是由多台主机构成的一个集群,而集群中主机与主机之间的数据交互量一般来说都是非常大的,所以在集群中主机之间的网络设备要求很高。
3、除了以上两个典型应用之外,还有一类比较特殊的应用系统,他们的数据量不是特别大,但是访问请求及其频繁,而且大部分是读请求。可能每秒需要提供上万甚至几万次请求,每次请求都非常简单,可能大部分都只有一条或者几条比较小的记录返回,就比如基于数据库的DNS服务就是这样类型的服务。
虽然数据量小,但是访问极其频繁,所以可以通过较大的内存来cache住大部分的数据,这能够保证非常高的命中率,磁盘IO量比较小,所以磁盘也不需要特别高性能的;
并发请求非常频繁,比需要较强的CPU处理能力才能处理;
虽然应用与数据库交互量非常大,但是每次交互数据较少,总体流量虽然也会较大,但是一般来说普通的千兆网卡已经足够了。
五、MySQL 锁定机制简介
行级锁定(row-level)
表级锁定(table-level)
页级锁定(page-level)
在MySQL数据库中,使用表级锁定的主要是MyISAM,Memory,CSV等一些非事务性存储引擎,而使用行级锁定的主要是Innodb存储引擎和NDBCluster存储引擎,页级锁定主要是BerkeleyDB存储引擎的锁定方式。
六、MySQL Query的优化
Query语句的优化思路和原则主要提现在以下几个方面:
1. 优化更需要优化的Query;
2. 定位优化对象的性能瓶颈;
3. 明确的优化目标;
4. 从Explain入手;
5. 多使用profile
6. 永远用小结果集驱动大的结果集;
7. 尽可能在索引中完成排序;
8. 只取出自己需要的Columns;
9. 仅仅使用最有效的过滤条件;
10.尽可能避免复杂的Join和子查询;
合理设计并利用索引
1)B-Tree索引
一般来说,MySQL中的B-Tree索引的物理文件大多都是以BalanceTree的结构来存储的,也就是所有实际需要的数据都存放于Tree的LeafNode,而且到任何一个LeafNode的最短路径的长度都是完全相同的,所以我们大家都称之为B-Tree索引当然,可能各种数据库(或MySQL的各种存储引擎)在存放自己的B-Tree索引的时候会对存储结构稍作改造。如Innodb存储引擎的B-Tree索引实际使用的存储结构实际上是B+Tree,也就是在B-Tree数据结构的基础上做了很小的改造,在每一个LeafNode上面出了存放索引键的相关信息之外,还存储了指向与该LeafNode相邻的后一个LeafNode的指针信息,这主要是为了加快检索多个相邻LeafNode的效率考虑。
2)Hash索引
Hash索引在MySQL中使用的并不是很多,目前主要是Memory存储引擎使用,而且在Memory存储引擎中将Hash索引作为默认的索引类型。所谓Hash索引,实际上就是通过一定的Hash算法,将需要索引的键值进行Hash运算,然后将得到的Hash值存入一个Hash表中。然后每次需要检索的时候,都会将检索条件进行相同算法的Hash运算,然后再和Hash表中的Hash值进行比较并得出相应的信息。
Hash索引仅仅只能满足“=”,“IN”和“<=>”查询,不能使用范围查询;
Hash索引无法被利用来避免数据的排序操作;
Hash索引不能利用部分索引键查询;
Hash索引在任何时候都不能避免表扫面;
Hash索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高;
3)Full-text索引
Full-text索引也就是我们常说的全文索引,目前在MySQL中仅有MyISAM存储引擎支持,而且也并不是所有的数据类型都支持全文索引。目前来说,仅有CHAR,VARCHAR和TEXT这三种数据类型的列可以建Full-text索引。
索引能够极大的提高数据检索效率,也能够改善排序分组操作的性能,但是我们不能忽略的一个问题就是索引是完全独立于基础数据之外的一部分数据,更新数据会带来的IO量和调整索引所致的计算量的资源消耗。
是否需要创建索引,几点原则:较频繁的作为查询条件的字段应该创建索引;唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件;更新非常频繁的字段不适合创建索引;
不会出现在WHERE子句中的字段不该创建索引;
Join语句的优化
尽可能减少Join语句中的NestedLoop的循环总次数;“永远用小结果集驱动大的结果集”。
优先优化NestedLoop的内层循环;
保证Join语句中被驱动表上Join条件字段已经被索引;
当无法保证被驱动表的Join条件字段被索引且内存资源充足的前提下,不要太吝惜JoinBuffer的设置;
ORDER BY,GROUP BY和DISTINCT优化
1)ORDER BY的实现与优化
优化Query语句中的ORDER BY的时候,尽可能利用已有的索引来避免实际的排序计算,可以很大幅度的提升ORDER BY操作的性能。
优化排序:
1.加大max_length_for_sort_data参数的设置;
2.去掉不必要的返回字段;
3.增大sort_buffer_size参数设置;
2)GROUP BY的实现与优化
由于GROUP BY实际上也同样需要进行排序操作,而且与ORDER BY相比,GROUP BY主要只是多了排序之后的分组操作。当然,如果在分组的时候还使用了其他的一些聚合函数,那么还需要一些聚合函数的计算。所以,在GROUP BY的实现过程中,与ORDER BY一样也可以利用到索引。
3)DISTINCT的实现与优化
DISTINCT实际上和GROUP BY的操作非常相似,只不过是在GROUP BY之后的每组中只取出一条记录而已。所以,DISTINCT的实现和GROUP BY的实现也基本差不多,没有太大的区别。同样可以通过松散索引扫描或者是紧凑索引扫描来实现,当然,在无法仅仅使用索引即能完成DISTINCT的时候,MySQL只能通过临时表来完成。但是,和GROUP BY有一点差别的是,DISTINCT并不需要进行排序。也就是说,在仅仅只是DISTINCT操作的Query如果无法仅仅利用索引完成操作的时候,MySQL会利用临时表来做一次数据的“缓存”,但是不会对临时表中的数据进行filesort操作。
七、MySQL数据库Schema设计的性能优化
高效的模型设计
适度冗余-让Query尽两减少Join
大字段垂直分拆-summary表优化
大表水平分拆-基于类型的分拆优化
统计表-准实时优化
合适的数据类型
时间存储格式总类并不是太多,我们常用的主要就是DATETIME,DATE和TIMESTAMP这三种了。从存储空间来看TIMESTAMP最少,四个字节,而其他两种数据类型都是八个字节,多了一倍。而TIMESTAMP的缺点在于他只能存储从1970年之后的时间,而另外两种时间类型可以存放最早从1001年开始的时间。如果有需要存放早于1970年之前的时间的需求,我们必须放弃TIMESTAMP类型,但是只要我们不需要使用1970年之前的时间,最好尽量使用TIMESTAMP来减少存储空间的占用。
字符存储类型
CHAR[(M)]类型属于静态长度类型,存放长度完全以字符数来计算,所以最终的存储长度是基于字符集的,如latin1则最大存储长度为255字节,但是如果使用gbk则最大存储长度为510字节。CHAR类型的存储特点是不管我们实际存放多长数据,在数据库中都会存放M个字符,不够的通过空格补上,M默认为1。虽然CHAR会通过空格补齐存放的空间,但是在访问数据的时候,MySQL会忽略最后的所有空格,所以如果我们的实际数据中如果在最后确实需要空格,则不能使用CHAR类型来存放。
VARCHAR[(M)]属于动态存储长度类型,仅存占用实际存储数据的长度。TINYTEXT,TEXT,MEDIUMTEXT和LONGTEXT这四种类型同属于一种存储方式,都是动态存储长度类型,不同的仅仅是最大长度的限制。
事务优化
1. 脏读:脏读就是指当一个事务正在访问数据,并且对数据进行了修改,而这种修改还没有提交到数据库中,这时,另外一个事务也访问这个数据,然后使用了这个数据。
2. 不可重复读:是指在一个事务内,多次读同一数据。在这个事务还没有结束时,另外一个事务也访问该同一数据。那么,在第一个事务中的两次读数据之间,由于第二个事务的修改,那么第一个事务两次读到的的数据可能是不一样的。这样就发生了在一个事务内两次读到的数据是不一样的,因此称为是不可重复读。
3. 幻读:是指当事务不是独立执行时发生的一种现象,例如第一个事务对一个表中的数据进行了修改,这种修改涉及到表中的全部数据行。同时,第二个事务也修改这个表中的数据,这种修改是向表中插入一行新数据。那么,以后就会发生操作第一个事务的用户发现表中还有没有修改的数据行,就好象发生了幻觉一样。
Innodb在事务隔离级别方面支持的信息如下:
1.READ UNCOMMITTED
常被成为Dirty Reads(脏读),可以说是事务上的最低隔离级别:在普通的非锁定模式下SELECT的执行使我们看到的数据可能并不是查询发起时间点的数据,因而在这个隔离度下是非Consistent Reads(一致性读);
2.READ COMMITTED
这一隔离级别下,不会出现DirtyRead,但是可能出现Non-RepeatableReads(不可重复读)和PhantomReads(幻读)。
3. REPEATABLE READ
REPEATABLE READ隔离级别是InnoDB默认的事务隔离级。在REPEATABLE READ隔离级别下,不会出现DirtyReads,也不会出现Non-Repeatable Read,但是仍然存在PhantomReads的可能性。
4.SERIALIZABLE
SERIALIZABLE隔离级别是标准事务隔离级别中的最高级别。设置为SERIALIZABLE隔离级别之后,在事务中的任何时候所看到的数据都是事务启动时刻的状态,不论在这期间有没有其他事务已经修改了某些数据并提交。所以,SERIALIZABLE事务隔离级别下,PhantomReads也不会出现。
八、可扩展性设计之数据切分
数据的垂直切分
数据的垂直切分,也可以称之为纵向切分。将数据库想象成为由很多个一大块一大块的“数据块”(表)组成,我们垂直的将这些“数据块”切开,然后将他们分散到多台数据库主机上面。这样的切分方法就是一个垂直(纵向)的数据切分。
垂直切分的优点
◆数据库的拆分简单明了,拆分规则明确;
◆应用程序模块清晰明确,整合容易;
◆数据维护方便易行,容易定位;
垂直切分的缺点
◆部分表关联无法在数据库级别完成,需要在程序中完成;
◆对于访问极其频繁且数据量超大的表仍然存在性能平静,不一定能满足要求;
◆事务处理相对更为复杂;
◆切分达到一定程度之后,扩展性会遇到限制;
◆过读切分可能会带来系统过渡复杂而难以维护。
数据的水平切分
数据的垂直切分基本上可以简单的理解为按照表按照模块来切分数据,而水平切分就不再是按照表或者是功能模块来切分了。一般来说,简单的水平切分主要是将某个访问极其平凡的表再按照某个字段的某种规则来分散到多个表之中,每个表中包含一部分数据。
水平切分的优点
◆表关联基本能够在数据库端全部完成;
◆不会存在某些超大型数据量和高负载的表遇到瓶颈的问题;
◆应用程序端整体架构改动相对较少;
◆事务处理相对简单;
◆只要切分规则能够定义好,基本上较难遇到扩展性限制;
水平切分的缺点
◆切分规则相对更为复杂,很难抽象出一个能够满足整个数据库的切分规则;
◆后期数据的维护难度有所增加,人为手工定位数据更困难;
◆应用系统各模块耦合度较高,可能会对后面数据的迁移拆分造成一定的困难。
数据切分与整合中可能存在的问题
1.引入分布式事务的问题
完全可以将一个跨多个数据库的分布式事务分拆成多个仅处于单个数据库上面的小事务,并通过应用程序来总控各个小事务。当然,这样作的要求就是我们的俄应用程序必须要有足够的健壮性,当然也会给应用程序带来一些技术难度。
2.跨节点Join的问题
推荐通过应用程序来进行处理,先在驱动表所在的MySQLServer中取出相应的驱动结果集,然后根据驱动结果集再到被驱动表所在的MySQL Server中取出相应的数据。
3.跨节点合并排序分页问题
从多个数据源并行的取数据,然后应用程序汇总处理。
九、可扩展性设计之Cache与Search的利用
通过引入Cache(Redis、Memcached),减少数据库的访问,增加性能。
通过引入Search(Lucene、Solr、ElasticSearch),利用搜索引擎高效的全文索引和分词算法,以及高效的数据检索实现,来解决数据库和传统的Cache软件完全无法解决的全文模糊搜索、分类统计查询等功能。
本文乃《MySQL性能调优与架构设计》读书笔记
========
MySQL 调优/优化的 100 个建议
http://blog.jobbole.com/87989/
MySQL是一个强大的开源数据库。随着MySQL上的应用越来越多,MySQL逐渐遇到了瓶颈。这里提供 101 条优化 MySQL 的建议。有些技巧适合特定的安装环境,但是思路是相通的。我已经将它们分成了几类以帮助你理解。
MySQL监控
MySQL服务器硬件和OS(操作系统)调优:
1、有足够的物理内存,能将整个InnoDB文件加载到内存里 —— 如果访问的文件在内存里,而不是在磁盘上,InnoDB会快很多。
2、全力避免 Swap 操作 — 交换(swapping)是从磁盘读取数据,所以会很慢。
3、使用电池供电的RAM(Battery-Backed RAM)。
4、使用一个高级磁盘阵列 — 最好是 RAID10 或者更高。
5、避免使用RAID5 — 和校验需要确保完整性,开销很高。
6、将你的操作系统和数据分开,不仅仅是逻辑上要分开,物理上也要分开 — 操作系统的读写开销会影响数据库的性能。
7、将临时文件和复制日志与数据文件分开 — 后台的写操作影响数据库从磁盘文件的读写操作。
8、更多的磁盘空间等于更高的速度。
9、磁盘速度越快越好。
10、SAS优于SATA。
11、小磁盘的速度比大磁盘的更快,尤其是在 RAID 中。
12、使用电池供电的缓存 RAID(Battery-Backed Cache RAID)控制器。
13、避免使用软磁盘阵列。
14. 考虑使用固态IO卡(不是磁盘)来作为数据分区 — 几乎对所有量级数据,这种卡能够支持 2 GBps 的写操作。
15、在 Linux 系统上,设置 swappiness 的值为0 — 没有理由在数据库服务器上缓存文件,这种方式在Web服务器或桌面应用中用的更多。
16、尽可能使用 noatime 和 nodirtime 来挂载文件系统 — 没有必要为每次访问来更新文件的修改时间。
17、使用 XFS 文件系统 — 一个比ext3更快的、更小的文件系统,拥有更多的日志选项,同时,MySQL在ext3上存在双缓冲区的问题。
18、优化你的 XFS 文件系统日志和缓冲区参数 – -为了获取最大的性能基准。
19、在Linux系统中,使用 NOOP 或 DEADLINE IO 调度器 — CFQ 和 ANTICIPATORY 调度器已经被证明比 NOOP 和 DEADLINE 慢。
20、使用 64 位操作系统 — 有更多的内存能用于寻址和 MySQL 使用。
21、将不用的包和后台程序从服务器上删除 — 减少资源占用。
22、将使用 MySQL 的 host 和 MySQL自身的 host 都配置在一个 host 文件中 — 这样没有 DNS 查找。
23、永远不要强制杀死一个MySQL进程 — 你将损坏数据库,并运行备份。
24、让你的服务器只服务于MySQL — 后台处理程序和其他服务会占用数据库的 CPU 时间。
MySQL 配置:
25、使用 innodb_flush_method=O_DIRECT 来避免写的时候出现双缓冲区。
26、避免使用 O_DIRECT 和 EXT3 文件系统 — 这会把所有写入的东西序列化。
27、分配足够 innodb_buffer_pool_size ,来将整个InnoDB 文件加载到内存 — 减少从磁盘上读。
28、不要让 innodb_log_file_size 太大,这样能够更快,也有更多的磁盘空间 — 经常刷新有利降低发生故障时的恢复时间。
29、不要同时使用 innodb_thread_concurrency 和 thread_concurrency 变量 — 这两个值不能兼容。
30、为 max_connections 指定一个小的值 — 太多的连接将耗尽你的RAM,导致整个MySQL服务器被锁定。
31、保持 thread_cache 在一个相对较高的数值,大约是 16 — 防止打开连接时候速度下降。
32、使用 skip-name-resolve — 移除 DNS 查找。
33、如果你的查询重复率比较高,并且你的数据不是经常改变,请使用查询缓存 — 但是,在经常改变的数据上使用查询缓存会对性能有负面影响。
34、增加 temp_table_size — 防止磁盘写。
35、增加 max_heap_table_size — 防止磁盘写。
36、不要将 sort_buffer_size 的值设置的太高 — 可能导致连接很快耗尽所有内存。
37、监控 key_read_requests 和 key_reads,以便确定 key_buffer 的值 — key 的读需求应该比 key_reads 的值更高,否则使用 key_buffer 就没有效率了。
38、设置 innodb_flush_log_at_trx_commit = 0 可以提高性能,但是保持默认值(1)的话,能保证数据的完整性,也能保证复制不会滞后。
39、有一个测试环境,便于测试你的配置,可以经常重启,不会影响生产环境。
MySQL Schema 优化:
40、保证你的数据库的整洁性。
41、归档老数据 — 删除查询中检索或返回的多余的行
42、在数据上加上索引。
43、不要过度使用索引,评估你的查询。
44、压缩 text 和 blob 数据类型 — 为了节省空间,减少从磁盘读数据。
45、UTF 8 和 UTF16 比 latin1 慢。
46、有节制的使用触发器。
47、保持数据最小量的冗余 — 不要复制没必要的数据.
48、使用链接表,而不是扩展行。
49、注意你的数据类型,尽可能的使用最小的。
50、如果其他数据需要经常需要查询,而 blob/text 不需要,则将 blob/text 数据域其他数据分离。
51、经常检查和优化表。
52、经常做重写 InnoDB 表的优化。
53、有时,增加列时,先删除索引,之后在加上索引会更快。
54、为不同的需求选择不同的存储引擎。
55、日志表或审计表使用ARCHIVE存储引擎 — 写的效率更高。
56、将 session 数据存储在 memcache 中,而不是 MySQL 中 — memcache 可以设置自动过期,防止MySQL对临时数据高成本的读写操作。
57、如果字符串的长度是可变的,则使用VARCHAR代替CHAR — 节约空间,因为CHAR是固定长度,而VARCHAR不是(utf8 不受这个影响)。
58、逐步对 schema 做修改 — 一个小的变化将产生的巨大的影响。
59、在开发环境测试所有 schema 变动,而不是在生产环境的镜像上去做。
60、不要随意改变你的配置文件,这可能产生非常大的影响。
61、有时候,少量的配置会更好。
62、质疑使用通用的MySQL配置文件。
查询优化:
63、使用慢查询日志,找出执行慢的查询。
64、使用 EXPLAIN 来决定查询功能是否合适。
65、经常测试你的查询,看是否需要做性能优化 — 性能可能会随着时间的变化而变化。
66、避免在整个表上使用count(*) ,它可能会将整个表锁住。
67、保持查询一致,这样后续类似的查询就能使用查询缓存了。
68、如果合适,用 GROUP BY 代替 DISTINCT。
69、在 WHERE、GROUP BY 和 ORDER BY 的列上加上索引。
70、保证索引简单,不要在同一列上加多个索引。
71、有时,MySQL 会选择错误的索引,这种情况使用 USE INDEX。
72、使用 SQL_MODE=STRICT 来检查问题。
73、索引字段少于5个时,UNION 操作用 LIMIT,而不是 OR。
74、使用 INSERT ON DUPLICATE KEY 或 INSERT IGNORE 来代替 UPDATE,避免 UPDATE 前需要先 SELECT。
75、使用索引字段和 ORDER BY 来代替 MAX。
76、避免使用 ORDER BY RAND()。
77、LIMIT M,N 在特定场景下会降低查询效率,有节制使用。
78、使用 UNION 来代替 WHERE 子句中的子查询。
79、对 UPDATE 来说,使用 SHARE MODE 来防止排他锁。
80、重启 MySQL 时,记得预热数据库,确保将数据加载到内存,提高查询效率。
81、使用 DROP TABLE ,然后再 CREATE TABLE ,而不是 DELETE FROM ,以删除表中所有数据。
82、最小化你要查询的数据,只获取你需要的数据,通常来说不要使用 *。
83、考虑持久连接,而不是多次建立连接,已减少资源的消耗。
84、基准查询,包括服务器的负载,有时一个简单的查询会影响其他的查询。
85、当服务器的负载增加时,使用SHOW PROCESSLIST来查看慢的/有问题的查询。
86、在存有生产环境数据副本的开发环境中,测试所有可疑的查询。
MySQL备份过程:
87、在二级复制服务器上进行备份。
88、备份过程中停止数据的复制,以防止出现数据依赖和外键约束的不一致。
89、彻底停止MySQL之后,再从数据文件进行备份。
90、如果使用MySQL dump进行备份,请同时备份二进制日志 — 确保复制过程不被中断。
91、不要信任 LVM 快照的备份 — 可能会创建不一致的数据,将来会因此产生问题。
92、为每个表做一个备份,这样更容易实现单表的恢复 — 如果数据与其他表是相互独立的。
93、使用 mysqldump 时,指定 -opt 参数。
94、备份前检测和优化表。
95、临时禁用外键约束,来提高导入的速度。
96、临时禁用唯一性检查,来提高导入的速度。
97、每次备份完后,计算数据库/表数据和索引的大小,监控其增长。
98、使用定时任务(cron)脚本,来监控从库复制的错误和延迟。
99、定期备份数据。
100、定期测试备份的数据。
========
mysql性能优化-慢查询分析、优化索引和配置
http://blog.chinaunix.net/uid-11640640-id-3426908.html
目录
一、优化概述
二、查询与索引优化分析
1性能瓶颈定位
Show命令
慢查询日志
explain分析查询
profiling分析查询
2索引及查询优化
三、配置优化
1) max_connections
2) back_log
3) interactive_timeout
4) key_buffer_size
5) query_cache_size
6) record_buffer_size
7) read_rnd_buffer_size
8) sort_buffer_size
9) join_buffer_size
10) table_cache
11) max_heap_table_size
12) tmp_table_size
13) thread_cache_size
14) thread_concurrency
15) wait_timeout
一、 优化概述
MySQL数据库是常见的两个瓶颈是CPU和I/O的瓶颈,CPU在饱和的时候一般发生在数据装入内存或从磁盘上读取数据时候。磁盘I/O瓶颈发生在装入数据远大于内存容量的时候,如果应用分布在网络上,那么查询量相当大的时候那么平瓶颈就会出现在网络上,我们可以用mpstat, iostat, sar和vmstat来查看系统的性能状态。
除了服务器硬件的性能瓶颈,对于MySQL系统本身,我们可以使用工具来优化数据库的性能,通常有三种:使用索引,使用EXPLAIN分析查询以及调整MySQL的内部配置。
二、查询与索引优化分析
在优化MySQL时,通常需要对数据库进行分析,常见的分析手段有慢查询日志,EXPLAIN 分析查询,profiling分析以及show命令查询系统状态及系统变量,通过定位分析性能的瓶颈,才能更好的优化数据库系统的性能。
1 性能瓶颈定位Show命令
我们可以通过show命令查看MySQL状态及变量,找到系统的瓶颈:
Mysql> show status ——显示状态信息(扩展show status like ‘XXX’)
Mysql> show variables ——显示系统变量(扩展show variables like ‘XXX’)
Mysql> show innodb status ——显示InnoDB存储引擎的状态
Mysql> show processlist ——查看当前SQL执行,包括执行状态、是否锁表等
Shell> mysqladmin variables -u username -p password——显示系统变量
Shell> mysqladmin extended-status -u username -p password——显示状态信息
查看状态变量及帮助:
Shell> mysqld –verbose –help [|more #逐行显示]
比较全的Show命令的使用可参考: http://blog.phpbean.com/a.cn/18/
慢查询日志
慢查询日志开启:
在配置文件my.cnf或my.ini中在[mysqld]一行下面加入两个配置参数
log-slow-queries=/data/mysqldata/slow-query.log
long_query_time=2
注:log-slow-queries参数为慢查询日志存放的位置,一般这个目录要有mysql的运行帐号的可写权限,一般都将这个目录设置为mysql的数据存放目录;
long_query_time=2中的2表示查询超过两秒才记录;
在my.cnf或者my.ini中添加log-queries-not-using-indexes参数,表示记录下没有使用索引的查询。
log-slow-queries=/data/mysqldata/slow-query.log
long_query_time=10
log-queries-not-using-indexes
慢查询日志开启方法二:
我们可以通过命令行设置变量来即时启动慢日志查询。由下图可知慢日志没有打开,slow_launch_time=# 表示如果建立线程花费了比这个值更长的时间,slow_launch_threads 计数器将增加
设置慢日志开启
MySQL后可以查询long_query_time 的值 。
为了方便测试,可以将修改慢查询时间为5秒。
慢查询分析mysqldumpslow
我们可以通过打开log文件查看得知哪些SQL执行效率低下
[root@localhost mysql]# more slow-query.log
# Time: 081026 19:46:34
# User@Host: root[root] @ localhost []
# Query_time: 11 Lock_time: 0 Rows_sent: 1 Rows_examined: 6552961
select count(*) from t_user;
从日志中,可以发现查询时间超过5 秒的SQL,而小于5秒的没有出现在此日志中。
如果慢查询日志中记录内容很多,可以使用mysqldumpslow工具(MySQL客户端安装自带)来对慢查询日志进行分类汇总。mysqldumpslow对日志文件进行了分类汇总,显示汇总后摘要结果。
进入log的存放目录,运行
[root@mysql_data]#mysqldumpslow slow-query.log
Reading mysql slow query log from slow-query.log
Count: 2 Time=11.00s (22s) Lock=0.00s (0s) Rows=1.0 (2), root[root]@mysql
select count(N) from t_user;
mysqldumpslow命令
/path/mysqldumpslow -s c -t 10 /database/mysql/slow-query.log
这会输出记录次数最多的10条SQL语句,其中:
-s, 是表示按照何种方式排序,c、t、l、r分别是按照记录次数、时间、查询时间、返回的记录数来排序,ac、at、al、ar,表示相应的倒叙;
-t, 是top n的意思,即为返回前面多少条的数据;
-g, 后边可以写一个正则匹配模式,大小写不敏感的;
例如:
/path/mysqldumpslow -s r -t 10 /database/mysql/slow-log
得到返回记录集最多的10个查询。
/path/mysqldumpslow -s t -t 10 -g “left join” /database/mysql/slow-log
得到按照时间排序的前10条里面含有左连接的查询语句。
使用mysqldumpslow命令可以非常明确的得到各种我们需要的查询语句,对MySQL查询语句的监控、分析、优化是MySQL优化非常重要的一步。开启慢查询日志后,由于日志记录操作,在一定程度上会占用CPU资源影响mysql的性能,但是可以阶段性开启来定位性能瓶颈。
explain分析查询
使用 EXPLAIN 关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是如何处理你的SQL语句的。这可以帮你分析你的查询语句或是表结构的性能瓶颈。通过explain命令可以得到:
– 表的读取顺序
– 数据读取操作的操作类型
– 哪些索引可以使用
– 哪些索引被实际使用
– 表之间的引用
– 每张表有多少行被优化器查询
EXPLAIN字段:
ØTable:显示这一行的数据是关于哪张表的
Øpossible_keys:显示可能应用在这张表中的索引。如果为空,没有可能的索引。可以为相关的域从WHERE语句中选择一个合适的语句
Økey:实际使用的索引。如果为NULL,则没有使用索引。MYSQL很少会选择优化不足的索引,此时可以在SELECT语句中使用USE INDEX(index)来强制使用一个索引或者用IGNORE INDEX(index)来强制忽略索引
Økey_len:使用的索引的长度。在不损失精确性的情况下,长度越短越好
Øref:显示索引的哪一列被使用了,如果可能的话,是一个常数
Ørows:MySQL认为必须检索的用来返回请求数据的行数
Øtype:这是最重要的字段之一,显示查询使用了何种类型。从最好到最差的连接类型为system、const、eq_reg、ref、range、index和ALL
nsystem、const:可以将查询的变量转为常量. 如id=1; id为 主键或唯一键.
neq_ref:访问索引,返回某单一行的数据.(通常在联接时出现,查询使用的索引为主键或惟一键)
nref:访问索引,返回某个值的数据.(可以返回多行) 通常使用=时发生
nrange:这个连接类型使用索引返回一个范围中的行,比如使用>或<查找东西,并且该字段上建有索引时发生的情况(注:不一定好于index)
nindex:以索引的顺序进行全表扫描,优点是不用排序,缺点是还要全表扫描
nALL:全表扫描,应该尽量避免
ØExtra:关于MYSQL如何解析查询的额外信息,主要有以下几种
nusing index:只用到索引,可以避免访问表.
nusing where:使用到where来过虑数据. 不是所有的where clause都要显示using where. 如以=方式访问索引.
nusing tmporary:用到临时表
nusing filesort:用到额外的排序. (当使用order by v1,而没用到索引时,就会使用额外的排序)
nrange checked for eache record(index map:N):没有好的索引.
profiling分析查询
通过慢日志查询可以知道哪些SQL语句执行效率低下,通过explain我们可以得知SQL语句的具体执行情况,索引使用等,还可以结合show命令查看执行状态。
如果觉得explain的信息不够详细,可以同通过profiling命令得到更准确的SQL执行消耗系统资源的信息。
profiling默认是关闭的。可以通过以下语句查看
打开功能: mysql>set profiling=1; 执行需要测试的sql 语句:
mysql> show profiles\G; 可以得到被执行的SQL语句的时间和ID
mysql>show profile for query 1; 得到对应SQL语句执行的详细信息
Show Profile命令格式:
SHOW PROFILE [type [, type] … ]
[FOR QUERY n]
[LIMIT row_count [OFFSET offset]]
type:
ALL
| BLOCK IO
| CONTEXT SWITCHES
| CPU
| IPC
| MEMORY
| PAGE FAULTS
| SOURCE
| SWAPS
以上的16rows是针对非常简单的select语句的资源信息,对于较复杂的SQL语句,会有更多的行和字段,比如converting HEAP to MyISAM 、Copying to tmp table等等,由于以上的SQL语句不存在复杂的表操作,所以未显示这些字段。通过profiling资源耗费信息,我们可以采取针对性的优化措施。
测试完毕以后 ,关闭参数:mysql> set profiling=0
2 索引及查询优化
索引的类型
Ø 普通索引:这是最基本的索引类型,没唯一性之类的限制。
Ø 唯一性索引:和普通索引基本相同,但所有的索引列值保持唯一性。
Ø 主键:主键是一种唯一索引,但必须指定为”PRIMARY KEY”。
Ø 全文索引:MYSQL从3.23.23开始支持全文索引和全文检索。在MYSQL中,全文索引的索引类型为FULLTEXT。全文索引可以在VARCHAR或者TEXT类型的列上创建。
大多数MySQL索引(PRIMARY KEY、UNIQUE、INDEX和FULLTEXT)使用B树中存储。空间列类型的索引使用R-树,MEMORY表支持hash索引。
单列索引和多列索引(复合索引)
索引可以是单列索引,也可以是多列索引。对相关的列使用索引是提高SELECT操作性能的最佳途径之一。
多列索引:
MySQL可以为多个列创建索引。一个索引可以包括15个列。对于某些列类型,可以索引列的左前缀,列的顺序非常重要。
多列索引可以视为包含通过连接索引列的值而创建的值的排序的数组。一般来说,即使是限制最严格的单列索引,它的限制能力也远远低于多列索引。
最左前缀
多列索引有一个特点,即最左前缀(Leftmost Prefixing)。假如有一个多列索引为key(firstname lastname age),当搜索条件是以下各种列的组合和顺序时,MySQL将使用该多列索引:
firstname,lastname,age
firstname,lastname
firstname
也就是说,相当于还建立了key(firstname lastname)和key(firstname)。
索引主要用于下面的操作:
Ø 快速找出匹配一个WHERE子句的行。
Ø 删除行。当执行联接时,从其它表检索行。
Ø 对具体有索引的列key_col找出MAX()或MIN()值。由预处理器进行优化,检查是否对索引中在key_col之前发生所有关键字元素使用了WHERE key_part_# = constant。在这种情况下,MySQL为每个MIN()或MAX()表达式执行一次关键字查找,并用常数替换它。如果所有表达式替换为常量,查询立即返回。例如:
SELECT MIN(key2), MAX (key2) FROM tb WHERE key1=10;
Ø 如果对一个可用关键字的最左面的前缀进行了排序或分组(例如,ORDER BY key_part_1,key_part_2),排序或分组一个表。如果所有关键字元素后面有DESC,关键字以倒序被读取。
Ø 在一些情况中,可以对一个查询进行优化以便不用查询数据行即可以检索值。如果查询只使用来自某个表的数字型并且构成某些关键字的最左面前缀的列,为了更快,可以从索引树检索出值。
SELECT key_part3 FROM tb WHERE key_part1=1
有时MySQL不使用索引,即使有可用的索引。一种情形是当优化器估计到使用索引将需要MySQL访问表中的大部分行时。(在这种情况下,表扫描可能会更快些)。然而,如果此类查询使用LIMIT只搜索部分行,MySQL则使用索引,因为它可以更快地找到几行并在结果中返回。例如:
合理的建立索引的建议:
(1) 越小的数据类型通常更好:越小的数据类型通常在磁盘、内存和CPU缓存中都需要更少的空间,处理起来更快。
(2) 简单的数据类型更好:整型数据比起字符,处理开销更小,因为字符串的比较更复杂。在MySQL中,应该用内置的日期和时间数据类型,而不是用字符串来存储时间;以及用整型数据类型存储IP地址。
(3) 尽量避免NULL:应该指定列为NOT NULL,除非你想存储NULL。在MySQL中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值
这部分是关于索引和写SQL语句时应当注意的一些琐碎建议和注意点。
1. 当结果集只有一行数据时使用LIMIT 1
2. 避免SELECT *,始终指定你需要的列
从表中读取越多的数据,查询会变得更慢。他增加了磁盘需要操作的时间,还是在数据库服务器与WEB服务器是独立分开的情况下。你将会经历非常漫长的网络延迟,仅仅是因为数据不必要的在服务器之间传输。
3. 使用连接(JOIN)来代替子查询(Sub-Queries)
连接(JOIN).. 之所以更有效率一些,是因为MySQL不需要在内存中创建临时表来完成这个逻辑上的需要两个步骤的查询工作。
4. 使用ENUM、CHAR 而不是VARCHAR,使用合理的字段属性长度
5. 尽可能的使用NOT NULL
6. 固定长度的表会更快
7. 拆分大的DELETE 或INSERT 语句
8. 查询的列越小越快
Where条件
在查询中,WHERE条件也是一个比较重要的因素,尽量少并且是合理的where条件是很重要的,尽量在多个条件的时候,把会提取尽量少数据量的条件放在前面,减少后一个where条件的查询时间。
有些where条件会导致索引无效:
Ø where子句的查询条件里有!=,MySQL将无法使用索引。
Ø where子句使用了Mysql函数的时候,索引将无效,比如:select * from tb where left(name, 4) = ‘xxx’
Ø 使用LIKE进行搜索匹配的时候,这样索引是有效的:select * from tbl1 where name like ‘xxx%’,而like ‘%xxx%’ 时索引无效
三、 配置优化
安装MySQL后,配置文件my.cnf在 /MySQL安装目录/share/mysql目录中,该目录中还包含多个配置文件可供参考,有my-large.cnf ,my-huge.cnf, my-medium.cnf,my-small.cnf,分别对应大中小型数据库应用的配置。win环境下即存在于MySQL安装目录中的.ini文件。
下面列出了对性能优化影响较大的主要变量,主要分为连接请求的变量和缓冲区变量。
1. 连接请求的变量:
1) max_connections
MySQL的最大连接数,增加该值增加mysqld 要求的文件描述符的数量。如果服务器的并发连接请求量比较大,建议调高此值,以增加并行连接数量,当然这建立在机器能支撑的情况下,因为如果连接数越多,介于MySQL会为每个连接提供连接缓冲区,就会开销越多的内存,所以要适当调整该值,不能盲目提高设值。
数值过小会经常出现ERROR 1040: Too many connections错误,可以过’conn%’通配符查看当前状态的连接数量,以定夺该值的大小。
show variables like ‘max_connections’ 最大连接数
show status like ‘max_used_connections’响应的连接数
如下:
mysql> show variables like ‘max_connections‘;
+———————–+——-+
| Variable_name | Value |
+———————–+——-+
| max_connections | 256 |
+———————–+——-+
mysql> show status like ‘max%connections‘;
+———————–+——-+
| Variable_name | Value |
+—————————-+——-+
| max_used_connections | 256|
+—————————-+——-+
max_used_connections / max_connections * 100% (理想值≈ 85%)
如果max_used_connections跟max_connections相同 那么就是max_connections设置过低或者超过服务器负载上限了,低于10%则设置过大。
2) back_log
MySQL能暂存的连接数量。当主要MySQL线程在一个很短时间内得到非常多的连接请求,这就起作用。如果MySQL的连接数据达到max_connections时,新来的请求将会被存在堆栈中,以等待某一连接释放资源,该堆栈的数量即back_log,如果等待连接的数量超过back_log,将不被授予连接资源。
back_log值指出在MySQL暂时停止回答新请求之前的短时间内有多少个请求可以被存在堆栈中。只有如果期望在一个短时间内有很多连接,你需要增加它,换句话说,这值对到来的TCP/IP连接的侦听队列的大小。
当观察你主机进程列表(mysql> show full processlist),发现大量264084 | unauthenticated user | xxx.xxx.xxx.xxx | NULL | Connect | NULL | login | NULL 的待连接进程时,就要加大back_log 的值了。
默认数值是50,可调优为128,对于Linux系统设置范围为小于512的整数。
3) interactive_timeout
一个交互连接在被服务器在关闭前等待行动的秒数。一个交互的客户被定义为对mysql_real_connect()使用CLIENT_INTERACTIVE 选项的客户。
默认数值是28800,可调优为7200。
2. 缓冲区变量
全局缓冲:
4) key_buffer_size
key_buffer_size指定索引缓冲区的大小,它决定索引处理的速度,尤其是索引读的速度。通过检查状态值Key_read_requests和Key_reads,可以知道key_buffer_size设置是否合理。比例key_reads / key_read_requests应该尽可能的低,至少是1:100,1:1000更好(上述状态值可以使用SHOW STATUS LIKE ‘key_read%’获得)。
key_buffer_size只对MyISAM表起作用。即使你不使用MyISAM表,但是内部的临时磁盘表是MyISAM表,也要使用该值。可以使用检查状态值created_tmp_disk_tables得知详情。
举例如下:
mysql> show variables like ‘key_buffer_size‘;
+——————-+————+
| Variable_name | Value |
+———————+————+
| key_buffer_size | 536870912 |
+———— ———-+————+
key_buffer_size为512MB,我们再看一下key_buffer_size的使用情况:
mysql> show global status like ‘key_read%‘;
+————————+————-+
| Variable_name | Value |
+————————+————-+
| Key_read_requests| 27813678764 |
| Key_reads | 6798830 |
+————————+————-+
一共有27813678764个索引读取请求,有6798830个请求在内存中没有找到直接从硬盘读取索引,计算索引未命中缓存的概率:
key_cache_miss_rate =Key_reads / Key_read_requests * 100%,设置在1/1000左右较好
默认配置数值是8388600(8M),主机有4GB内存,可以调优值为268435456(256MB)。
5) query_cache_size
使用查询缓冲,MySQL将查询结果存放在缓冲区中,今后对于同样的SELECT语句(区分大小写),将直接从缓冲区中读取结果。
通过检查状态值Qcache_*,可以知道query_cache_size设置是否合理(上述状态值可以使用SHOW STATUS LIKE ‘Qcache%’获得)。如果Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不够的情况,如果Qcache_hits的值也非常大,则表明查询缓冲使用非常频繁,此时需要增加缓冲大小;如果Qcache_hits的值不大,则表明你的查询重复率很低,这种情况下使用查询缓冲反而会影响效率,那么可以考虑不用查询缓冲。此外,在SELECT语句中加入SQL_NO_CACHE可以明确表示不使用查询缓冲。
与查询缓冲有关的参数还有query_cache_type、query_cache_limit、query_cache_min_res_unit。
query_cache_type指定是否使用查询缓冲,可以设置为0、1、2,该变量是SESSION级的变量。
query_cache_limit指定单个查询能够使用的缓冲区大小,缺省为1M。
query_cache_min_res_unit是在4.1版本以后引入的,它指定分配缓冲区空间的最小单位,缺省为4K。检查状态值Qcache_free_blocks,如果该值非常大,则表明缓冲区中碎片很多,这就表明查询结果都比较小,此时需要减小query_cache_min_res_unit。
举例如下:
mysql> show global status like ‘qcache%‘;
+——————————-+—————–+
| Variable_name | Value |
+——————————-+—————–+
| Qcache_free_blocks | 22756 |
| Qcache_free_memory | 76764704 |
| Qcache_hits | 213028692 |
| Qcache_inserts | 208894227 |
| Qcache_lowmem_prunes | 4010916 |
| Qcache_not_cached | 13385031 |
| Qcache_queries_in_cache | 43560 |
| Qcache_total_blocks | 111212 |
+——————————-+—————–+
mysql> show variables like ‘query_cache%‘;
+————————————–+————–+
| Variable_name | Value |
+————————————–+———–+
| query_cache_limit | 2097152 |
| query_cache_min_res_unit | 4096 |
| query_cache_size | 203423744 |
| query_cache_type | ON |
| query_cache_wlock_invalidate | OFF |
+————————————–+—————+
查询缓存碎片率= Qcache_free_blocks / Qcache_total_blocks * 100%
如果查询缓存碎片率超过20%,可以用FLUSH QUERY CACHE整理缓存碎片,或者试试减小query_cache_min_res_unit,如果你的查询都是小数据量的话。
查询缓存利用率= (query_cache_size – Qcache_free_memory) / query_cache_size * 100%
查询缓存利用率在25%以下的话说明query_cache_size设置的过大,可适当减小;查询缓存利用率在80%以上而且Qcache_lowmem_prunes > 50的话说明query_cache_size可能有点小,要不就是碎片太多。
查询缓存命中率= (Qcache_hits – Qcache_inserts) / Qcache_hits * 100%
示例服务器查询缓存碎片率=20.46%,查询缓存利用率=62.26%,查询缓存命中率=1.94%,命中率很差,可能写操作比较频繁吧,而且可能有些碎片。
每个连接的缓冲
6) record_buffer_size
每个进行一个顺序扫描的线程为其扫描的每张表分配这个大小的一个缓冲区。如果你做很多顺序扫描,你可能想要增加该值。
默认数值是131072(128K),可改为16773120 (16M)
7) read_rnd_buffer_size
随机读缓冲区大小。当按任意顺序读取行时(例如,按照排序顺序),将分配一个随机读缓存区。进行排序查询时,MySQL会首先扫描一遍该缓冲,以避免磁盘搜索,提高查询速度,如果需要排序大量数据,可适当调高该值。但MySQL会为每个客户连接发放该缓冲空间,所以应尽量适当设置该值,以避免内存开销过大。
一般可设置为16M
8) sort_buffer_size
每个需要进行排序的线程分配该大小的一个缓冲区。增加这值加速ORDER BY或GROUP BY操作。
默认数值是2097144(2M),可改为16777208 (16M)。
9) join_buffer_size
联合查询操作所能使用的缓冲区大小
record_buffer_size,read_rnd_buffer_size,sort_buffer_size,join_buffer_size为每个线程独占,也就是说,如果有100个线程连接,则占用为16M*100
10) table_cache
表高速缓存的大小。每当MySQL访问一个表时,如果在表缓冲区中还有空间,该表就被打开并放入其中,这样可以更快地访问表内容。通过检查峰值时间的状态值Open_tables和Opened_tables,可以决定是否需要增加table_cache的值。如果你发现open_tables等于table_cache,并且opened_tables在不断增长,那么你就需要增加table_cache的值了(上述状态值可以使用SHOW STATUS LIKE ‘Open%tables’获得)。注意,不能盲目地把table_cache设置成很大的值。如果设置得太高,可能会造成文件描述符不足,从而造成性能不稳定或者连接失败。
1G内存机器,推荐值是128-256。内存在4GB左右的服务器该参数可设置为256M或384M。
11) max_heap_table_size
用户可以创建的内存表(memory table)的大小。这个值用来计算内存表的最大行数值。这个变量支持动态改变,即set @max_heap_table_size=#
这个变量和tmp_table_size一起限制了内部内存表的大小。如果某个内部heap(堆积)表大小超过tmp_table_size,MySQL可以根据需要自动将内存中的heap表改为基于硬盘的MyISAM表。
12) tmp_table_size
通过设置tmp_table_size选项来增加一张临时表的大小,例如做高级GROUP BY操作生成的临时表。如果调高该值,MySQL同时将增加heap表的大小,可达到提高联接查询速度的效果,建议尽量优化查询,要确保查询过程中生成的临时表在内存中,避免临时表过大导致生成基于硬盘的MyISAM表。
mysql> show global status like ‘created_tmp%‘;
+——————————–+———+
| Variable_name | Value |
+———————————-+———+
| Created_tmp_disk_tables | 21197 |
| Created_tmp_files | 58 |
| Created_tmp_tables | 1771587 |
+——————————–+———–+
每次创建临时表,Created_tmp_tables增加,如果临时表大小超过tmp_table_size,则是在磁盘上创建临时表,Created_tmp_disk_tables也增加,Created_tmp_files表示MySQL服务创建的临时文件文件数,比较理想的配置是:
Created_tmp_disk_tables / Created_tmp_tables * 100% <= 25%比如上面的服务器Created_tmp_disk_tables / Created_tmp_tables * 100% =1.20%,应该相当好了
默认为16M,可调到64-256最佳,线程独占,太大可能内存不够I/O堵塞
13) thread_cache_size
可以复用的保存在中的线程的数量。如果有,新的线程从缓存中取得,当断开连接的时候如果有空间,客户的线置在缓存中。如果有很多新的线程,为了提高性能可以这个变量值。
通过比较 Connections和Threads_created状态的变量,可以看到这个变量的作用。
默认值为110,可调优为80。
14) thread_concurrency
推荐设置为服务器 CPU核数的2倍,例如双核的CPU, 那么thread_concurrency的应该为4;2个双核的cpu, thread_concurrency的值应为8。默认为8
15) wait_timeout
指定一个请求的最大连接时间,对于4GB左右内存的服务器可以设置为5-10。
3. 配置InnoDB的几个变量
innodb_buffer_pool_size
对于InnoDB表来说,innodb_buffer_pool_size的作用就相当于key_buffer_size对于MyISAM表的作用一样。InnoDB使用该参数指定大小的内存来缓冲数据和索引。对于单独的MySQL数据库服务器,最大可以把该值设置成物理内存的80%。
根据MySQL手册,对于2G内存的机器,推荐值是1G(50%)。
innodb_flush_log_at_trx_commit
主要控制了innodb将log buffer中的数据写入日志文件并flush磁盘的时间点,取值分别为0、1、2三个。0,表示当事务提交时,不做日志写入操作,而是每秒钟将log buffer中的数据写入日志文件并flush磁盘一次;1,则在每秒钟或是每次事物的提交都会引起日志文件写入、flush磁盘的操作,确保了事务的ACID;设置为2,每次事务提交引起写入日志文件的动作,但每秒钟完成一次flush磁盘操作。
实际测试发现,该值对插入数据的速度影响非常大,设置为2时插入10000条记录只需要2秒,设置为0时只需要1秒,而设置为1时则需要229秒。因此,MySQL手册也建议尽量将插入操作合并成一个事务,这样可以大幅提高速度。
根据MySQL手册,在允许丢失最近部分事务的危险的前提下,可以把该值设为0或2。
innodb_log_buffer_size
log缓存大小,一般为1-8M,默认为1M,对于较大的事务,可以增大缓存大小。
可设置为4M或8M。
innodb_additional_mem_pool_size
该参数指定InnoDB用来存储数据字典和其他内部数据结构的内存池大小。缺省值是1M。通常不用太大,只要够用就行,应该与表结构的复杂度有关系。如果不够用,MySQL会在错误日志中写入一条警告信息。
根据MySQL手册,对于2G内存的机器,推荐值是20M,可适当增加。
innodb_thread_concurrency=8
推荐设置为 2*(NumCPUs+NumDisks),默认一般为8
========
MySQL优化必须调整的10项配置
http://www.jb51.net/article/47419.htm
这篇文章主要介绍了MySQL优化必须调整的10项配置,使用这些方法可以让你快速地获得一个稳健的MySQL配置,需要的朋友可以参考下
..当我们被人雇来监测MySQL性能时,人们希望我们能够检视一下MySQL配置然后给出一些提高建议。许多人在事后都非常惊讶,因为我们建议他们仅仅改动几个设置,即使是这里有好几百个配置项。这篇文章的目的在于给你一份非常重要的配置项清单。
我们曾在几年前在博客里给出了这样的建议,但是MySQL的世界变化实在太快了!
写在开始前…
即使是经验老道的人也会犯错,会引起很多麻烦。所以在盲目的运用这些推荐之前,请记住下面的内容:
一次只改变一个设置!这是测试改变是否有益的唯一方法。
大多数配置能在运行时使用SET GLOBAL改变。这是非常便捷的方法它能使你在出问题后快速撤销变更。但是,要永久生效你需要在配置文件里做出改动。
一个变更即使重启了MySQL也没起作用?请确定你使用了正确的配置文件。请确定你把配置放在了正确的区域内(所有这篇文章提到的配置都属于 [mysqld])
服务器在改动一个配置后启不来了:请确定你使用了正确的单位。例如,innodb_buffer_pool_size的单位是MB而max_connection是没有单位的。
不要在一个配置文件里出现重复的配置项。如果你想追踪改动,请使用版本控制。
不要用天真的计算方法,例如”现在我的服务器的内存是之前的2倍,所以我得把所有数值都改成之前的2倍“。
基本配置
你需要经常察看以下3个配置项。不然,可能很快就会出问题。
innodb_buffer_pool_size:这是你安装完InnoDB后第一个应该设置的选项。缓冲池是数据和索引缓存的地方:这个值越大越好,这能保证你在大多数的读取操作时使用的是内存而不是硬盘。典型的值是5-6GB(8GB内存),20-25GB(32GB内存),100-120GB(128GB内存)。
innodb_log_file_size:这是redo日志的大小。redo日志被用于确保写操作快速而可靠并且在崩溃时恢复。一直到MySQL 5.1,它都难于调整,因为一方面你想让它更大来提高性能,另一方面你想让它更小来使得崩溃后更快恢复。幸运的是从MySQL 5.5之后,崩溃恢复的性能的到了很大提升,这样你就可以同时拥有较高的写入性能和崩溃恢复性能了。一直到MySQL 5.5,redo日志的总尺寸被限定在4GB(默认可以有2个log文件)。这在MySQL 5.6里被提高。
一开始就把innodb_log_file_size设置成512M(这样有1GB的redo日志)会使你有充裕的写操作空间。如果你知道你的应用程序需要频繁的写入数据并且你使用的时MySQL 5.6,你可以一开始就把它这是成4G。
max_connections:如果你经常看到‘Too many connections'错误,是因为max_connections的值太低了。这非常常见因为应用程序没有正确的关闭数据库连接,你需要比默认的151连接数更大的值。max_connection值被设高了(例如1000或更高)之后一个主要缺陷是当服务器运行1000个或更高的活动事务时会变的没有响应。在应用程序里使用连接池或者在MySQL里使用进程池有助于解决这一问题。
InnoDB配置
从MySQL 5.5版本开始,InnoDB就是默认的存储引擎并且它比任何其他存储引擎的使用都要多得多。那也是为什么它需要小心配置的原因。
innodb_file_per_table:这项设置告知InnoDB是否需要将所有表的数据和索引存放在共享表空间里(innodb_file_per_table = OFF) 或者为每张表的数据单独放在一个.ibd文件(innodb_file_per_table = ON)。每张表一个文件允许你在drop、truncate或者rebuild表时回收磁盘空间。这对于一些高级特性也是有必要的,比如数据压缩。但是它不会带来任何性能收益。你不想让每张表一个文件的主要场景是:有非常多的表(比如10k+)。
MySQL 5.6中,这个属性默认值是ON,因此大部分情况下你什么都不需要做。对于之前的版本你必需在加载数据之前将这个属性设置为ON,因为它只对新创建的表有影响。
innodb_flush_log_at_trx_commit:默认值为1,表示InnoDB完全支持ACID特性。当你的主要关注点是数据安全的时候这个值是最合适的,比如在一个主节点上。但是对于磁盘(读写)速度较慢的系统,它会带来很巨大的开销,因为每次将改变flush到redo日志都需要额外的fsyncs。将它的值设置为2会导致不太可靠(reliable)因为提交的事务仅仅每秒才flush一次到redo日志,但对于一些场景是可以接受的,比如对于主节点的备份节点这个值是可以接受的。如果值为0速度就更快了,但在系统崩溃时可能丢失一些数据:只适用于备份节点。
innodb_flush_method: 这项配置决定了数据和日志写入硬盘的方式。一般来说,如果你有硬件RAID控制器,并且其独立缓存采用write-back机制,并有着电池断电保护,那么应该设置配置为O_DIRECT;否则,大多数情况下应将其设为fdatasync(默认值)。sysbench是一个可以帮助你决定这个选项的好工具。
innodb_log_buffer_size: 这项配置决定了为尚未执行的事务分配的缓存。其默认值(1MB)一般来说已经够用了,但是如果你的事务中包含有二进制大对象或者大文本字段的话,这点缓存很快就会被填满并触发额外的I/O操作。看看Innodb_log_waits状态变量,如果它不是0,增加innodb_log_buffer_size。
其他设置
query_cache_size: query cache(查询缓存)是一个众所周知的瓶颈,甚至在并发并不多的时候也是如此。 最佳选项是将其从一开始就停用,设置query_cache_size = 0(现在MySQL 5.6的默认值)并利用其他方法加速查询:优化索引、增加拷贝分散负载或者启用额外的缓存(比如memcache或redis)。如果你已经为你的应用启用了query cache并且还没有发现任何问题,query cache可能对你有用。这是如果你想停用它,那就得小心了。
log_bin:如果你想让数据库服务器充当主节点的备份节点,那么开启二进制日志是必须的。如果这么做了之后,还别忘了设置server_id为一个唯一的值。就算只有一个服务器,如果你想做基于时间点的数据恢复,这(开启二进制日志)也是很有用的:从你最近的备份中恢复(全量备份),并应用二进制日志中的修改(增量备份)。二进制日志一旦创建就将永久保存。所以如果你不想让磁盘空间耗尽,你可以用 PURGE BINARY LOGS 来清除旧文件,或者设置 expire_logs_days 来指定过多少天日志将被自动清除。
记录二进制日志不是没有开销的,所以如果你在一个非主节点的复制节点上不需要它的话,那么建议关闭这个选项。
skip_name_resolve:当客户端连接数据库服务器时,服务器会进行主机名解析,并且当DNS很慢时,建立连接也会很慢。因此建议在启动服务器时关闭skip_name_resolve选项而不进行DNS查找。唯一的局限是之后GRANT语句中只能使用IP地址了,因此在添加这项设置到一个已有系统中必须格外小心。
总结
当然还有其他的设置可以起作用,取决于你的负载或硬件:在慢内存和快磁盘、高并发和写密集型负载情况下,你将需要特殊的调整。然而这里的目标是使得你可以快速地获得一个稳健的MySQL配置,而不用花费太多时间在调整一些无关紧要的MySQL设置或读文档找出哪些设置对你来说很重要上。
========
比较全面的MySQL优化参考
http://www.cnblogs.com/zengkefu/p/5683438.html
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可调整下面的几个配置,目的是发挥CPU最大性能,或者避免经典的NUMA问题:
1、选择Performance Per Watt Optimized(DAPC)模式,发挥CPU最大性能,跑DB这种通常需要高运算量的服务就不要考虑节电了;
2、关闭C1E和C States等选项,目的也是为了提升CPU效率;
3、Memory Frequency(内存频率)选择Maximum Performance(最佳性能);
4、内存设置菜单中,启用Node Interleaving,避免NUMA问题;
1.2、磁盘I/O相关
下面几个是按照IOPS性能提升的幅度排序,对于磁盘I/O可优化的一些措施:
1、使用SSD或者PCIe SSD设备,至少获得数百倍甚至万倍的IOPS提升;
2、购置阵列卡同时配备CACHE及BBU模块,可明显提升IOPS(主要是指机械盘,SSD或PCIe SSD除外。同时需要定期检查CACHE及BBU模块的健康状况,确保意外时不至于丢失数据);
3、有阵列卡时,设置阵列写策略为WB,甚至FORCE WB(若有双电保护,或对数据安全性要求不是特别高的话),严禁使用WT策略。并且闭阵列预读策略,基本上是鸡肋,用处不大;
4、尽可能选用RAID-10,而非RAID-5;
5、使用机械盘的话,尽可能选择高转速的,例如选用15KRPM,而不是7.2KRPM的盘,不差几个钱的;
2、系统层相关优化
2.1、文件系统层优化
在文件系统层,下面几个措施可明显提升IOPS性能:
1、使用deadline/noop这两种I/O调度器,千万别用cfq(它不适合跑DB类服务);
2、使用xfs文件系统,千万别用ext3;ext4勉强可用,但业务量很大的话,则一定要用xfs;
3、文件系统mount参数中增加:noatime, nodiratime, nobarrier几个选项(nobarrier是xfs文件系统特有的);
2.2、其他内核参数优化
针对关键内核参数设定合适的值,目的是为了减少swap的倾向,并且让内存和磁盘I/O不会出现大幅波动,导致瞬间波峰负载:
1、将vm.swappiness设置为5-10左右即可,甚至设置为0(RHEL 7以上则慎重设置为0,除非你允许OOM kill发生),以降低使用SWAP的机会;
2、将vm.dirty_background_ratio设置为5-10,将vm.dirty_ratio设置为它的两倍左右,以确保能持续将脏数据刷新到磁盘,避免瞬间I/O写,产生严重等待(和MySQL中的innodb_max_dirty_pages_pct类似);
3、将net.ipv4.tcp_tw_recycle、net.ipv4.tcp_tw_reuse都设置为1,减少TIME_WAIT,提高TCP效率;
4、至于网传的read_ahead_kb、nr_requests这两个参数,我经过测试后,发现对读写混合为主的OLTP环境影响并不大(应该是对读敏感的场景更有效果),不过没准是我测试方法有问题,可自行斟酌是否调整;
3、MySQL层相关优化
3.1、关于版本选择
官方版本我们称为ORACLE MySQL,这个没什么好说的,相信绝大多数人会选择它。
我个人强烈建议选择Percona分支版本,它是一个相对比较成熟的、优秀的MySQL分支版本,在性能提升、可靠性、管理型方面做了不少改善。它和官方ORACLE MySQL版本基本完全兼容,并且性能大约有20%以上的提升,因此我优先推荐它,我自己也从2008年一直以它为主。
另一个重要的分支版本是MariaDB,说MariaDB是分支版本其实已经不太合适了,因为它的目标是取代ORACLE MySQL。它主要在原来的MySQL Server层做了大量的源码级改进,也是一个非常可靠的、优秀的分支版本。但也由此产生了以GTID为代表的和官方版本无法兼容的新特性(MySQL 5.7开始,也支持GTID模式在线动态开启或关闭了),也考虑到绝大多数人还是会跟着官方版本走,因此没优先推荐MariaDB。
3.2、关于最重要的参数选项调整建议
建议调整下面几个关键参数以获得较好的性能(可使用本站提供的my.cnf生成器生成配置文件模板):
1、选择Percona或MariaDB版本的话,强烈建议启用thread pool特性,可使得在高并发的情况下,性能不会发生大幅下降。此外,还有extra_port功能,非常实用, 关键时刻能救命的。还有另外一个重要特色是 QUERY_RESPONSE_TIME 功能,也能使我们对整体的SQL响应时间分布有直观感受;
2、设置default-storage-engine=InnoDB,也就是默认采用InnoDB引擎,强烈建议不要再使用MyISAM引擎了,InnoDB引擎绝对可以满足99%以上的业务场景;
3、调整innodb_buffer_pool_size大小,如果是单实例且绝大多数是InnoDB引擎表的话,可考虑设置为物理内存的50% ~ 70%左右;
4、根据实际需要设置innodb_flush_log_at_trx_commit、sync_binlog的值。如果要求数据不能丢失,那么两个都设为1。如果允许丢失一点数据,则可分别设为2和10。而如果完全不用care数据是否丢失的话(例如在slave上,反正大不了重做一次),则可都设为0。这三种设置值导致数据库的性能受到影响程度分别是:高、中、低,也就是第一个会另数据库最慢,最后一个则相反;
5、设置innodb_file_per_table = 1,使用独立表空间,我实在是想不出来用共享表空间有什么好处了;
6、设置innodb_data_file_path = ibdata1:1G:autoextend,千万不要用默认的10M,否则在有高并发事务时,会受到不小的影响;
7、设置innodb_log_file_size=256M,设置innodb_log_files_in_group=2,基本可满足90%以上的场景;
8、设置long_query_time = 1,而在5.5版本以上,已经可以设置为小于1了,建议设置为0.05(50毫秒),记录那些执行较慢的SQL,用于后续的分析排查;
9、根据业务实际需要,适当调整max_connection(最大连接数)、max_connection_error(最大错误数,建议设置为10万以上,而open_files_limit、innodb_open_files、table_open_cache、table_definition_cache这几个参数则可设为约10倍于max_connection的大小;
10、常见的误区是把tmp_table_size和max_heap_table_size设置的比较大,曾经见过设置为1G的,这2个选项是每个连接会话都会分配的,因此不要设置过大,否则容易导致OOM发生;其他的一些连接会话级选项例如:sort_buffer_size、join_buffer_size、read_buffer_size、read_rnd_buffer_size等,也需要注意不能设置过大;
11、由于已经建议不再使用MyISAM引擎了,因此可以把key_buffer_size设置为32M左右,并且强烈建议关闭query cache功能;
3.3、关于Schema设计规范及SQL使用建议
下面列举了几个常见有助于提升MySQL效率的Schema设计规范及SQL使用建议:
1、所有的InnoDB表都设计一个无业务用途的自增列做主键,对于绝大多数场景都是如此,真正纯只读用InnoDB表的并不多,真如此的话还不如用TokuDB来得划算;
2、字段长度满足需求前提下,尽可能选择长度小的。此外,字段属性尽量都加上NOT NULL约束,可一定程度提高性能;
3、尽可能不使用TEXT/BLOB类型,确实需要的话,建议拆分到子表中,不要和主表放在一起,避免SELECT * 的时候读性能太差。
4、读取数据时,只选取所需要的列,不要每次都SELECT *,避免产生严重的随机读问题,尤其是读到一些TEXT/BLOB列;
5、对一个VARCHAR(N)列创建索引时,通常取其50%(甚至更小)左右长度创建前缀索引就足以满足80%以上的查询需求了,没必要创建整列的全长度索引;
6、通常情况下,子查询的性能比较差,建议改造成JOIN写法;
7、多表联接查询时,关联字段类型尽量一致,并且都要有索引;
8、多表连接查询时,把结果集小的表(注意,这里是指过滤后的结果集,不一定是全表数据量小的)作为驱动表;
9、多表联接并且有排序时,排序字段必须是驱动表里的,否则排序列无法用到索引;
10、多用复合索引,少用多个独立索引,尤其是一些基数(Cardinality)太小(比如说,该列的唯一值总数少于255)的列就不要创建独立索引了;
11、类似分页功能的SQL,建议先用主键关联,然后返回结果集,效率会高很多;
3.4、其他建议
关于MySQL的管理维护的其他建议有:
1、通常地,单表物理大小不超过10GB,单表行数不超过1亿条,行平均长度不超过8KB,如果机器性能足够,这些数据量MySQL是完全能处理的过来的,不用担心性能问题,这么建议主要是考虑ONLINE DDL的代价较高;
2、不用太担心mysqld进程占用太多内存,只要不发生OOM kill和用到大量的SWAP都还好;
3、在以往,单机上跑多实例的目的是能最大化利用计算资源,如果单实例已经能耗尽大部分计算资源的话,就没必要再跑多实例了;
4、定期使用pt-duplicate-key-checker检查并删除重复的索引。定期使用pt-index-usage工具检查并删除使用频率很低的索引;
5、定期采集slow query log,用pt-query-digest工具进行分析,可结合Anemometer系统进行slow query管理以便分析slow query并进行后续优化工作;
6、可使用pt-kill杀掉超长时间的SQL请求,Percona版本中有个选项 innodb_kill_idle_transaction 也可实现该功能;
7、使用pt-online-schema-change来完成大表的ONLINE DDL需求;
8、定期使用pt-table-checksum、pt-table-sync来检查并修复mysql主从复制的数据差异;
写在最后:这次的优化参考,大部分情况下我都介绍了适用的场景,如果你的应用场景和本文描述的不太一样,那么建议根据实际情况进行调整,而不是生搬硬套。欢迎质疑拍砖,但拒绝不经过大脑的习惯性抵制。
========