Point: 重点是Comparable和Comparator接口的区别和实现。另外需要特别注意点的坐标是整数类型而斜率是浮点数,所以在计算斜率时可以乘以1.0。其次要注意Java中正负零不相等的问题,即0/5与0/(-5)不相同。
import java.util.Comparator;
import edu.princeton.cs.algs4.StdDraw;
public class Point implements Comparable{
private int x;
private int y;
public Point(int x, int y){
this.x = x;
this.y = y;
}
// x and y are between 0 and 32767
public void draw(){
StdDraw.point(x, y);
}
// StdDraw with input between 0 and 1
public void drawTo(Point that){
StdDraw.line(x, y, that.x, that.y);
}
public String toString() {
return "Point [x=" + x + ", y=" + y + "]";
}
// implementation for Comparable
public int compareTo(Point that) {
if(y < that.y || (y == that.y && x < that.x)){
return -1;
}else if(y == that.y && x == that.x){
return 0;
}else{
return 1;
}
}
public double slopeTo(Point that){
if(this.compareTo(that) == 0){
return Double.NEGATIVE_INFINITY;
}else if(this.x == that.x){
return Double.POSITIVE_INFINITY;
}else if(this.y == that.y){
return +0; // negative zero != positive zero
}else{
return (that.y - y) * 1.0 /(that.x - x); // integer to double
}
}
public Comparator slopeOrder(){
return new BySlope();
}
// implementation for Comparator
private class BySlope implements Comparator{
public int compare(Point o1, Point o2) {
if(slopeTo(o1) < slopeTo(o2)) return -1;
if(slopeTo(o1) > slopeTo(o2)) return 1;
return 0;
}
}
}
LineSegment:不做要求,测试时会提供。注意StdDraw的使用。
import edu.princeton.cs.algs4.StdDraw;
public class LineSegment {
private Point p_top;
private Point p_bot;
public LineSegment(Point p, Point q){
p_top = p;
p_bot = q;
}
public void draw(){
p_top.drawTo(p_bot);
}
public String toString() {
return "LineSegment [p1=" + p_top + ", p2=" + p_bot + "]";
}
public static void main(String[] args){
Point p1 = new Point(15000,18000);
Point p2 = new Point(8000,22000);
Point p3 = new Point(600,9000);
Point p4 = new Point(9000,5000);
Point p5 = new Point(12000,10000);
StdDraw.enableDoubleBuffering();
StdDraw.setXscale(0, 32768);
StdDraw.setYscale(0, 32768);
StdDraw.setPenRadius(0.01);
StdDraw.setPenColor(StdDraw.BLUE);
p1.draw();
p2.draw();
p3.draw();
p4.draw();
p5.draw();
StdDraw.show();
StdDraw.setPenColor(StdDraw.MAGENTA);
p1.drawTo(p5);
p2.drawTo(p4);
StdDraw.setPenColor(StdDraw.RED);
p3.drawTo(p2);
StdDraw.show();
}
}
BruteCollinearPoints:使用了ArrayList及其自带的toArray方法。时间复杂度控制在N^4以内。注意不能直接对构造方法输入参数points进行排序,需要进行深度复制。
import java.util.ArrayList;
import edu.princeton.cs.algs4.Merge;
public class BruteCollinearPoints {
private Point[] pts;
private ArrayList lines;
public BruteCollinearPoints(Point[] points){
// deep copy to avoid mutating the constructor argument
checkNullArgument(points);
this.pts = new Point[points.length];
for(int k = 0; k < points.length; k++){
pts[k] = points[k];
}
checkDuplicatedElement(pts); // mergesort
lines = new ArrayList(); // to avoid NullPointerException
for(int k1 = 0; k1 < pts.length; k1++){
for(int k2 = k1 + 1; k2 < pts.length; k2++){
for(int k3 = k2 + 1; k3 < pts.length; k3++){
if(pts[k1].slopeTo(pts[k2]) == pts[k1].slopeTo(pts[k3])){
for(int k4 = k3 + 1; k4 < pts.length; k4++){
if(pts[k1].slopeTo(pts[k2]) == pts[k1].slopeTo(pts[k4])){
// k1, k2, k3, k4 are already sorted
lines.add(new LineSegment(pts[k1], pts[k4]));
}
}
}
}
}
}
}
public int numberOfSegments(){
return lines.size();
}
// line segment will contain at most 4 collinear points
public LineSegment[] segments(){
return lines.toArray(new LineSegment[numberOfSegments()]);
}
private void checkDuplicatedElement(Point[] points){
// sort input array by natural order
Merge.sort(points);
// duplicated element
for(int i=1; i
FastCollinearPoints:难点在于如何确认找到的segment是不是之前找到过的线段的subsegment,同时要保证时间复杂度在N*N*lg(N)以内。以下代码通过使用复杂度为lg(N)的BinarySearch成功地完成了任务。
import java.util.ArrayList;
import java.util.Arrays;
import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.Merge;
import edu.princeton.cs.algs4.StdDraw;
import edu.princeton.cs.algs4.StdOut;
public class FastCollinearPoints {
private Point[] pts;
private ArrayList lines;
/**
* constructor ~ n*nlg(n)
* @param points
*/
public FastCollinearPoints(Point[] points){
checkNullArgument(points);
this.pts = new Point[points.length];
for(int k = 0; k < points.length; k++){
pts[k] = points[k];
}
checkDuplicatedElement(pts); // mergesort ~ nlg(n)
lines = new ArrayList(); // to avoid NullPointerException
// IndexOutOfBoundsException for i < pts.length
for(int i = 0; i < pts.length - 1; i++){
Double[] slopesB4 = new Double[i]; // slopes with points upstream
Point[] pointsAf = new Point[pts.length - i - 1]; // points downstream
for(int k = 0; k < i; k++) {
slopesB4[k] = pts[i].slopeTo(pts[k]);
}
for(int j = 0; j < pts.length - i - 1; j++) {
pointsAf[j] = pts[j + i + 1];
}
// sort upstream slopes by natural order ~ nlg(n)
Merge.sort(slopesB4);
// sort downstream points by slope order to pts[i] ~ nlg(n)
Arrays.sort(pointsAf, pts[i].slopeOrder());
addSegment(slopesB4, pts[i], pointsAf); // ~ nlg(n)
}
}
/**
* add appropriate line segment ~ nlg(n)
* @param slopesB4: slopes of upstream points to point p
* @param p: the origin point
* @param pointsAf: downstream points
*/
private void addSegment(Double[] slopesB4, Point p, Point[] pointsAf){
int count = 1;
double lastSlope = p.slopeTo(pointsAf[0]);
for(int i = 1; i < pointsAf.length; i++){
double slope = p.slopeTo(pointsAf[i]);
if(slope != lastSlope){
if(count >= 3 && !subSegment(lastSlope, slopesB4)){
lines.add(new LineSegment(p, pointsAf[i - 1]));
}
count = 1;
}else{
count++; // the loop terminates with the last possible segment unchecked
}
lastSlope = slope;
}
// check the last point
if(count >= 3 && !subSegment(lastSlope, slopesB4)){
lines.add(new LineSegment(p, pointsAf[pointsAf.length - 1]));
}
}
/**
* binary search the given slope in slopsB4 ~ lg(n)
* @param s: the given slope
* @param slopes: of upstream points to the origin point
* @return
*/
private boolean subSegment(double s, Double[] slopes){
int lo = 0;
int hi = slopes.length - 1;
while(lo <= hi){
int mid = lo + (hi - lo) / 2;
if(s < slopes[mid]) hi = mid - 1;
else if(s > slopes[mid]) lo = mid + 1;
else return true;
}
return false;
}
public int numberOfSegments(){
return lines.size();
}
public LineSegment[] segments(){
return lines.toArray(new LineSegment[numberOfSegments()]);
}
private void checkDuplicatedElement(Point[] points){
// sort input array by natural order
Merge.sort(points);
// duplicated element
for(int i=1; i