普林斯顿大学算法Week3:CollinearPoints共线模式识别(99分)--总结及代码

总结

(代码有详细注释)
  1. 本课讲了归并排序,作业应用是排序进行共线的模式识别,java1.8中的排序用的是tim排序,结合了归并排序与插入排序,属于稳定排序:排序之后相同元素的相对位置会不会改变
  2. Point.java中有个非常重要的方法,compareTo(),它定义:纵坐标越小则点越小,如果纵坐标相同,那么横坐标越小则点越小.(如果作业中要求横坐标也是按顺序排列,那么排序后的点集映射到二维坐标系中是非递减的折线, 这样找共线只用一层循环即可,可惜作业没加上对x的限制)
  3. 比较大小,一开始我用的是points[i-1] == point[i],尽管坐标相同但是points[i-1]不等于points[i]
    因为points[i-1]和points[i]表示引用,在堆中指向两个不同的地址,比较大小得用points[i-1].compareTo(points[i])
  4. 在FastCollinearPoints.java中,一定要注意什么时候对共线点数变量count进行判断,有两种情况,一个是,相邻元素与参考点的斜率不同;另一个是循环到最后一个元素.这两种情况在代码注释中有解释
  5. 唯一一处FAILED,扣了1分,没系统学过java,先跳过了
Test 7: check for dependence on either compareTo() or compare()
        returning { -1, +1, 0 } instead of { negative integer,
        positive integer, zero }
  * filename = equidistant.txt
    - number of entries in student   solution: 0
    - number of entries in reference solution: 4
    - 4 missing entries in student solution, including: '(30000, 0) -> (20000, 10000) -> (10000, 20000) -> (0, 30000)'
==> FAILED
  1. week3课件中,递归调用的图示:
    这是包含两个递归调用的递归 (图示只画了一半)
    普林斯顿大学算法Week3:CollinearPoints共线模式识别(99分)--总结及代码_第1张图片

代码

(如需提交,请删除中文注释)

一:Point.java

import java.util.Comparator;
import edu.princeton.cs.algs4.StdDraw;
public class Point implements Comparable {
    // x-coordinate of this point
    private final int x;
    // y-coordinate of this point
    private final int y;
    // constructs the point (x, y)
    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    } 
    // draws this point
    public   void draw() {
        StdDraw.point(x,y);
    }
    // draws the line segment from this point to that point
    public   void drawTo(Point that) {
        StdDraw.line(this.x, this.y, that.x, that.y);
    }
    // string representation
    public String toString() {
        return "(" + x + ", " + y + ")";
    }
    // compare two points by y-coordinates, breaking ties by x-coordinates  
    public  int compareTo(Point that) {
        if(yreturn -1;
        else if(y==that.y && x==that.x) return 0;
        else return +1;
    }   
    // the slope between this point and that point
    public  double slopeTo(Point that) {
        if(x==that.x && y==that.y) return Double.NEGATIVE_INFINITY;
        if(x==that.x && y!=that.y) return Double.POSITIVE_INFINITY;     
        if(y==that.y) return +0.0;
        return (double)(y-that.y)/(x-that.x);
    }
    // compare two points by slopes they make with this point
    public Comparator slopeOrder(){
        return new SlopeOrder();
    }
    //nested class
    //sort rule
    private class SlopeOrder implements Comparator{
        public int compare(Point p,Point q) {
            //p点斜率大
            if(slopeTo(p)return -1;
            //p点斜率小
            else if(slopeTo(p)>slopeTo(q)) return 1;
            //p,q斜率相等
            else return 0;
        }
    }

    public static void main(String[] args) {
        Point p1 = new Point(0,0);
        Point p2 = new Point(1,1);
        Point p3 = new Point(2,2);
        Point p4 = new Point(2,1);
        Point p5 = new Point(4,1);
        System.out.println("p1.compareTo(p1) is "+p1.compareTo(p2));
        System.out.println("p2.compareTo(p1) is "+p2.compareTo(p1));
        System.out.println("p1.compareTo(p1) is "+p1.compareTo(p1)+"\n");

        System.out.println("p1.slopeTo(p2) is " +p1.slopeTo(p2));
        System.out.println("p1.slopeTo(p4) is "+p1.slopeTo(p4));
        System.out.println("p1.slopeTo(p1) is "+p1.slopeTo(p1));
        System.out.println("p3.slopeTo(p4) is "+p3.slopeTo(p4));
        System.out.println("p2.slopeTo(p5) is "+p2.slopeTo(p5));
    }
}

二:BruteCollinearPoints.java

import java.util.ArrayList;
import java.util.Arrays;
import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.Insertion;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.StdDraw;

public class BruteCollinearPoints {
     //to store line segments
     private ArrayList LineSegmentList;
     //to store the given points
     private Point[] points;

     //在构造函数中找出由4点构成的线段(作业说了:没有5点及更多点共线的情况)
     // finds all line segments containing 4 point
     public BruteCollinearPoints(Point[] pointsIn) { 
         //三种异常
         //一:if the argument to the constructor is null
         System.out.println(" a ");
         if(pointsIn == null) throw new IllegalArgumentException("there is no point");
         //二:if any point in the array is null
         int N = pointsIn.length;
         for(int i=0;iif(pointsIn[i]==null) throw new IllegalArgumentException("exist null point");
         //三:if the argument to the constructor contains a repeated point
         //检查是否有重复的点,先排序,再查重会方便,作业允许这样: For example, you may use Arrays.sort()
         points = new Point[N];
         for(int i=0;ifor(int i=1;iif(points[i-1].compareTo(points[i])==0) throw new IllegalArgumentException("exist repeated point"); 

         //to save every required line segment
         LineSegmentList = new ArrayList();

         //find line segment
         for(int dot1=0;dot1<=N-4;dot1++) {
             for(int dot2=dot1+1;dot2<=N-3;dot2++) {
                 //k12:the slope between point[dot2] and point[dot1]
                 double k12 = points[dot2].slopeTo(points[dot1]);
                 for(int dot3=dot2+1;dot3<=N-2;dot3++) {
                     //k13:the slope between point[dot3] and point[dot1]
                     double k13 = points[dot3].slopeTo(points[dot1]);
                     if(k13 != k12) continue;
                     for(int dot4=dot3+1;dot4<=N-1;dot4++) {
                        //k14:the slope between point[dot4] and point[dot1]
                         double k14 = points[dot4].slopeTo(points[dot1]);
                         if(k14 != k12) continue;
                         //find a line segment
                         LineSegment linesegment = new LineSegment(points[dot1],points[dot4]);
                         LineSegmentList.add(linesegment);
                     }
                 }
             }
         }
     }
     // the number of line segments
     public int numberOfSegments() {
         return LineSegmentList.size();
     }
     // the line segments
     public LineSegment[] segments() {
         LineSegment[] segments = new LineSegment[LineSegmentList.size()];
         int index=0;
         for(LineSegment Line : LineSegmentList) {
             segments[index++] = Line;
         }
         return segments;
     }    
     //main
     public static void main(String[] args) {
            In in = new In("src/week3/input8.txt"); 
            int n = in.readInt();
            StdOut.println("total "+n+" points");
            Point[] points = new Point[n];
            for (int i = 0; i < n; i++) {
                int x = in.readInt();
                int y = in.readInt();
                StdOut.println("("+x+","+y+")"); 
                points[i] = new Point(x,y);
            }       
            //draw the points
            StdDraw.enableDoubleBuffering();
            StdDraw.setXscale(0, 32768);
            StdDraw.setYscale(0, 32768);
            StdDraw.setPenColor(StdDraw.RED);
            StdDraw.setPenRadius(0.01);
            for (Point p : points) {
                p.draw();
            }
            StdDraw.show();              
            // print and draw the line segments
            BruteCollinearPoints collinear = new BruteCollinearPoints(points);
            StdOut.println(collinear.numberOfSegments());
            for (LineSegment segment : collinear.segments()) {
                StdOut.println(segment);
                segment.draw();
            }
            StdDraw.show();          
     }
}

三:FastCollinearPoints.java

import java.util.ArrayList;
import java.util.Arrays;
import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdDraw;
import edu.princeton.cs.algs4.StdOut;

//much faster than the brute-force solution
public class FastCollinearPoints {
    //to store line segments
    private ArrayList LineSegmentList;
    //to store the given points
    private Point[] points;

    // finds all line segments containing 4 or more points
    public FastCollinearPoints(Point[] pointsIn) {
         //三种异常
         //一:if the argument to the constructor is null
         if(pointsIn == null) throw new IllegalArgumentException("there is no point");
        //number of points
         int N=pointsIn.length;
         //二:if any point in the array is null
         for(int i=0;iif(pointsIn[i]==null) throw new IllegalArgumentException("exist null point");
         //三:if the argument to the constructor contains a repeated point
         //检查是否有重复的点,先排序,再查重会方便,作业允许这样: For example, you may use        Arrays.sort()
         //同时有利于后面排除重复线段
         points = new Point[N];
         for(int i=0;i//用的是结合了归并和插入的tim排序,稳定排序
         Arrays.sort(points);
         for(int i=1;iif(points[i-1].compareTo(points[i])==0) throw new IllegalArgumentException("exist repeated point");

         //to save every required line segment
         LineSegmentList = new ArrayList();


         //当前的参考点
         Point currentCheck;
         //对照点重新存储,不包括参考点,共N-1个
         Point[] otherPoints = new Point[N-1];
         //开始比较斜率,一个一个来
         for (int i=0;i// copy points without Point currentCheck to otherPoints
             for(int j=0;jif(jif(j>i) otherPoints[j-1] = points[j];
             }

             //根据斜率对点排序
             //用的是结合了归并和插入的tim排序,稳定排序
             Arrays.sort(otherPoints,currentCheck.slopeOrder());
             //遍历已经排序的otherPoints找线段
             //注意,归并和插入排序都是稳定的,所以tim排序是稳定的,这非常重要
             //配合Point的compareTo方法,可以直接过滤掉重复线段
             //一开始没太注意compareTo方法,后来发现这个方法能固定住点之间的相对位置,所以可以过滤重复线段
             //两点共线
             int count=2;
             for(int k=1;k1;k++) {
                 double k1 = otherPoints[k-1].slopeTo(currentCheck);
                 double k2 = otherPoints[k].slopeTo(currentCheck);
                 if(k1==k2) {
                     count++;
                     //当循环到最后一个点,同时这个点和前面的点共线
                     if(k==N-2) {
                         //如果4点及以上共线,并且otherPoints中与参考点共线且排在最左边的点比参考点大的话,注意此处是遍历到头,所以索引是k-count+2
                         if(count>=4 && currentCheck.compareTo(otherPoints[k-count+2])==-1) { 
                             //线段起点
                             Point start = currentCheck;
                             //线段终点
                             Point end = otherPoints[k];
                             LineSegment linesegment = new LineSegment(start,end);
                             LineSegmentList.add(linesegment);
                         }
                     }
                 }
                 else{
                    //如果4点及以上共线,并且otherPoints中与参考点共线且排在最左边的点比参考点大的话,索引是k-count+1
                     if(count>=4 && currentCheck.compareTo(otherPoints[k-count+1])==-1) {
                             Point start = currentCheck;
                             Point end = otherPoints[k-1];
                             LineSegment linesegment = new LineSegment(start,end);
                             LineSegmentList.add(linesegment);
                     }
                     count=2;
                 }
             }
         }
    }

    // the number of line segments
    public  int numberOfSegments() {
        return LineSegmentList.size();
    }
    // the line segments
    public LineSegment[] segments() {
        LineSegment[] segments = new LineSegment[LineSegmentList.size()];
         int index=0;
         for(LineSegment Line : LineSegmentList) {
             segments[index++] = Line;
         }
         return segments;
    }

    //main
         public static void main(String[] args) {
                In in = new In("src/week3/input9.txt"); 
                int n = in.readInt();
                StdOut.println("total "+n+" points");
                Point[] points = new Point[n];
                for (int i = 0; i < n; i++) {
                    int x = in.readInt();
                    int y = in.readInt();
                    StdOut.println("("+x+","+y+")"); 
                    points[i] = new Point(x,y);
                }

                //draw the points
                StdDraw.enableDoubleBuffering();
                StdDraw.setXscale(0, 32768);
                StdDraw.setYscale(0, 32768);
                StdDraw.setPenColor(StdDraw.RED);
                StdDraw.setPenRadius(0.01);
                for (Point p : points) {
                    p.draw();
                }
                StdDraw.show();

                //print and draw the line segments
                FastCollinearPoints collinear = new FastCollinearPoints(points);
                StdOut.println(collinear.numberOfSegments());
                for (LineSegment segment : collinear.segments()) {
                    StdOut.println(segment);
                    segment.draw();
                }
                StdDraw.show();          
         }
}

WelcomeToMyBlog

你可能感兴趣的:(coursera,算法,Java)