这才是 TensorFlow 自带可视化工具 TensorBoard 的正确打开方式!(附项目源码)

  TensorBoard

如何更直观的观察数据在神经网络中的变化,或是已经构建的神经网络的结构。上一篇文章说到,可以使用 matplotlib 第三方可视化,来进行一定程度上的可视化。然而Tensorflow也自带了可视化模块Tensorboard,并且能更直观的看见整个神经网络的结构。

这才是 TensorFlow 自带可视化工具 TensorBoard 的正确打开方式!(附项目源码)_第1张图片

上面的结构图甚至可以展开,变成:

这才是 TensorFlow 自带可视化工具 TensorBoard 的正确打开方式!(附项目源码)_第2张图片

  使用

结构图:


with tensorflow .name_scope(layer_name):  


直接使用以上代码生成一个带可展开符号的一个域,并且支持嵌套操作:


with tf.name_scope(layer_name):  
    with tf.name_scope('weights'):  


节点一般是变量或常量,需要加一个“name=‘’”参数,才会展示和命名,如:


with tf.name_scope('weights'):  
    Weights = tf.Variable(tf.random_normal([in_size,out_size]))  


这才是 TensorFlow 自带可视化工具 TensorBoard 的正确打开方式!(附项目源码)_第3张图片

结构图符号及意义:

这才是 TensorFlow 自带可视化工具 TensorBoard 的正确打开方式!(附项目源码)_第4张图片

变量:

变量则可使用Tensorflow.histogram_summary()方法:


tf.histogram_summary(layer_name+"/weights",Weights) #name命名,Weights赋值  


这才是 TensorFlow 自带可视化工具 TensorBoard 的正确打开方式!(附项目源码)_第5张图片

常量:

常量则可使用Tensorflow.scalar_summary()方法:


tf.scalar_summary('loss',loss) #命名和赋值  


这才是 TensorFlow 自带可视化工具 TensorBoard 的正确打开方式!(附项目源码)_第6张图片

展示:

最后需要整合和存储SummaryWriter:


#合并到Summary中  
merged = tf.merge_all_summaries()  
#选定可视化存储目录  
writer = tf.train.SummaryWriter("/目录",sess.graph)  


merged也是需要run的,因此还需要:


result = sess.run(merged) #merged也是需要run的  
    writer.add_summary(result,i)  


执行:

运行后,会在相应的目录里生成一个文件,执行:


tensorboard --logdir="/目录"  


会给出一段网址:

这才是 TensorFlow 自带可视化工具 TensorBoard 的正确打开方式!(附项目源码)

浏览器中打开这个网址即可,因为有兼容问题,firefox并不能很好的兼容,建议使用Chrome。

这才是 TensorFlow 自带可视化工具 TensorBoard 的正确打开方式!(附项目源码)_第7张图片

常量在Event中,结构图在Graphs中,变量在最后两个Tag中。

  附项目代码:

具体项目承接上一篇文章:


import tensorflow as tf  
import numpy as np  
  
def add_layer(inputs,in_size,out_size,n_layer,activation_function=None): #activation_function=None线性函数  
    layer_name="layer%s" % n_layer  
    with tf.name_scope(layer_name):  
        with tf.name_scope('weights'):  
            Weights = tf.Variable(tf.random_normal([in_size,out_size])) #Weight中都是随机变量  
            tf.histogram_summary(layer_name+"/weights",Weights) #可视化观看变量  
        with tf.name_scope('biases'):  
            biases = tf.Variable(tf.zeros([1,out_size])+0.1) #biases推荐初始值不为0  
            tf.histogram_summary(layer_name+"/biases",biases) #可视化观看变量  
        with tf.name_scope('Wx_plus_b'):  
            Wx_plus_b = tf.matmul(inputs,Weights)+biases #inputs*Weight+biases  
            tf.histogram_summary(layer_name+"/Wx_plus_b",Wx_plus_b) #可视化观看变量  
        if activation_function is None:  
            outputs = Wx_plus_b  
        else:  
            outputs = activation_function(Wx_plus_b)  
        tf.histogram_summary(layer_name+"/outputs",outputs) #可视化观看变量  
        return outputs  
  
#创建数据x_data,y_data  
x_data = np.linspace(-1,1,300)[:,np.newaxis] #[-1,1]区间,300个单位,np.newaxis增加维度  
noise = np.random.normal(0,0.05,x_data.shape) #噪点  
y_data = np.square(x_data)-0.5+noise  
  
with tf.name_scope('inputs'): #结构化  
    xs = tf.placeholder(tf.float32,[None,1],name='x_input')  
    ys = tf.placeholder(tf.float32,[None,1],name='y_input')  
  
#三层神经,输入层(1个神经元),隐藏层(10神经元),输出层(1个神经元)  
l1 = add_layer(xs,1,10,n_layer=1,activation_function=tf.nn.relu) #隐藏层  
prediction = add_layer(l1,10,1,n_layer=2,activation_function=None) #输出层  
  
#predition值与y_data差别  
with tf.name_scope('loss'):  
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1])) #square()平方,sum()求和,mean()平均值  
    tf.scalar_summary('loss',loss) #可视化观看常量  
with tf.name_scope('train'):  
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #0.1学习效率,minimize(loss)减小loss误差  
  
init = tf.initialize_all_variables()  
sess = tf.Session()  
#合并到Summary中  
merged = tf.merge_all_summaries()  
#选定可视化存储目录  
writer = tf.train.SummaryWriter("Desktop/",sess.graph)  
sess.run(init) #先执行init  
  
#训练1k次  
for i in range(1000):  
    sess.run(train_step,feed_dict={xs:x_data,ys:y_data})  
    if i%50==0:  
        result = sess.run(merged,feed_dict={xs:x_data,ys:y_data}) #merged也是需要run的  
        writer.add_summary(result,i) #result是summary类型的,需要放入writer中,i步数(x轴) 




本文作者:AI研习社
本文转自雷锋网禁止二次转载, 原文链接

你可能感兴趣的:(这才是 TensorFlow 自带可视化工具 TensorBoard 的正确打开方式!(附项目源码))