CF264D - Colorful Stones 题解

题面
官方题解
模拟赛题解

题解概述:
CF264D - Colorful Stones 题解_第1张图片
CF264D - Colorful Stones 题解_第2张图片
定义符号A~B表示序列A是序列B的子序列,A!~B反之。
设操作序列为I,则有A~I,B!~I,C~I,D!~I。

可得出条件①B!~C且D!~A,所以我们只要讨论满足这个条件的情况。

分情况讨论:

  1. c1=c2,则可以进行操作c1,得到的状态仍满足条件①;
  2. c1!=c2,且B'!~C,此时可以进行操作c1;
  3. c1!=c2,且D'!~A,此时可以进行操作c2;
  4. c1!=c2,且D'~A,B'~C,此时无法进行操作,此情况无解;
    我们还发现第4种情况下,B=...xyxy,D=...yxyx,且B,D长度相等。
    另外,当B以xy结尾,D以yx结尾时,此情况一定无解。

这就证明了当满足条件①时,无解当且仅当B以xy结尾,D以yx结尾。

这样就可以对于数对(x,y)的每一个x,求出对应y的范围(一段区间),然后把其中以yx结尾的y减去(用前缀和实现),就可以得到每一个x的答案了。

总复杂度O(n)。

代码:

#include
using namespace std;
#define N 2000007
#define ll long long
int a[N],b[N],s[3][3][N];
char ch[N];
int tar(char c)
{
    if(c=='R')return 0;
    if(c=='B')return 1;
    return 2;
}
int main()
{
    //freopen("stone.in","r",stdin);
    //freopen("stone.out","w",stdout);
    int n,m,i,j,l,r;
    ll ans=0;
    scanf("%s",ch+1);
    n=strlen(ch+1);
    for(i=1;i<=n;i++)
        a[i]=tar(ch[i]);
    scanf("%s",ch+1);
    m=strlen(ch+1);
    for(i=1;i<=m;i++)
        b[i]=tar(ch[i]);
    for(int x=0;x<=2;x++)
        for(int y=0;y<=2;y++)
        {
            for(i=2;i<=m;i++)
                if(b[i-1]==x&&b[i]==y)
                    s[x][y][i]=1;
            for(i=1;i<=m;i++)
                s[x][y][i]+=s[x][y][i-1];
        }
    l=1,r=1;
    while(rm)break;
        if(rr)continue;
        int x=a[i-1],y=a[i];
        ans+=r-l+1;
        if(x!=y)ans-=s[y][x][r]-s[y][x][l-1];
    }
    printf("%lld\n",ans);
    return 0;
}

总结:这个问题通过设出操作序列I,通过子序列的模型来描述题目条件,然后排除一些显然不合法的情况,确立一个有解的基本条件,再在这个条件下递归地讨论一种情况合不合法,最终发现无解的情况比较特殊,于是得到了一个易于判断的无解的充要条件,问题解决。

转载于:https://www.cnblogs.com/lishuyu2003/p/11502858.html

你可能感兴趣的:(CF264D - Colorful Stones 题解)