建立一个逻辑回归模型来预测一个学生是否被录取。
数据:LogiReg_data.txt
g ( z ) = 1 1 + e − z g(z) = \frac{1}{1 + e^{-z}} g(z)=1+e−z1
def sigmoid(z):
"""sigmoid函数"""
return 1 / (1 + np.exp(-z))
h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x h_\theta(x) = g(\theta^Tx) = \frac{1}{1 + e^{-\theta^Tx}} hθ(x)=g(θTx)=1+e−θTx1
def model(X, theta):
"""预测函数"""
return sigmoid(np.dot(X, theta.T))
损失函数,将对数似然函数去负号
D ( h θ ( x ) , y ) = − y log ( h θ ( x ) ) − ( 1 − y ) log ( 1 − h θ ( x ) ) D(h_\theta(x), y) = -y\log(h_\theta(x)) - (1-y)\log(1-h_\theta(x)) D(hθ(x),y)=−ylog(hθ(x))−(1−y)log(1−hθ(x))
求平均损失
J ( θ ) = 1 n ∑ i = 1 n D ( h θ ( x i ) , y i ) J(\theta) = \frac{1}{n}\sum\limits_{i=1}^{n}D(h_\theta(x^i), y^i) J(θ)=n1i=1∑nD(hθ(xi),yi)
def cost(X, y, theta):
"""损失函数"""
left = np.multiply(-y, np.log(model(X, theta)))
right = np.multiply(1 - y, np.log(1 - model(X, theta)))
return np.sum(left - right) / (len(X))
即求偏导
∂ J ∂ θ j = − 1 m ∑ i = 1 n ( y i − h θ ( x i ) ) x j i \frac{\partial J}{\partial \theta_j} = - \frac{1}{m}\sum\limits_{i=1}^n (y^i-h_\theta(x^i))x^i_j ∂θj∂J=−m1i=1∑n(yi−hθ(xi))xji
def gradient(X, y, theta):
"""梯度函数"""
# 梯度和θ参数一一对应
grad = np.zeros(theta.shape)
error = (model(X, theta) - y).ravel()
for j in range(len(theta.ravel())):
term = np.multiply(error, X[:, j]) # 都是一维
grad[0, j] = np.sum(term) / len(X)
return grad
import numpy.random
def shuffleData(data):
"""洗牌,打乱数据"""
np.random.shuffle(data)
cols = data.shape[1]
X = data[:, 0:cols-1]
y = data[:, cols-1:]
return X, y
import time
def descent(data, batchSize, stopType, thresh, alpha):
"""梯度下降求解"""
# 初始化
init_time = time.time() # 起始时间
i = 0 # 迭代次数
k = 0 # batch
X, y = shuffleData(data) # 洗牌
theta = np.zeros([1, X.shape[1]]) # θ参数
costs = [cost(X, y, theta)] # 损失值
while True:
grad = gradient(X[k: k+batchSize], y[k: k+batchSize], theta)
k += batchSize
if k >= n:
k = 0
X, y = shuffleData(data) # 重新洗牌
theta = theta - alpha * grad # 参数更新
costs.append(cost(X, y, theta)) # 计算新的损失
i += 1
# 三种停止策略
if (
(stopType == 'iter' and i > thresh) or
(stopType == 'cost' and abs(costs[-1] - costs[-2]) < thresh) or
(stopType == 'grad' and np.linalg.norm(grad) < threshold)
):
break
return theta, i-1, costs, grad, time.time()-init_time
def runExpe(data, batchSize, stopType, thresh, alpha):
theta, iter, costs, grad, dur = descent(data, batchSize, stopType, thresh, alpha)
# 以下可视化处理
name = "Original" if (data[:, 1] > 2).sum() > 0 else "Scaled"
name += " data - learning rate: {} - ".format(alpha)
if batchSize == n:
strDescType = "Gradient"
elif batchSize == 1:
strDescType = "Stochastic"
else:
strDescType = "Mini-batch ({})".format(batchSize)
name += strDescType + " descent - Stop: "
if stopType == 'iter':
strStop = "{} iterations".format(thresh)
elif stopType == 'cost':
strStop = "costs change < {}".format(thresh)
else:
strStop = "gradient norm < {}".format(thresh)
name += strStop
print("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
name, theta, iter, costs[-1], dur))
fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(np.arange(len(costs)), costs, 'r')
ax.set_xlabel('iterations')
ax.set_ylabel('Cost')
ax.set_title(name.upper() + ' - Error vs. iterations')
fig.show()
return theta
def predict(X, theta):
"""预测值"""
# 设定阈值x
return [1 if x >= 0.5 else 0 for x in model(X, theta)]
# 数据准备
path = 'LogiReg_data.txt'
pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
# 插入全为1的列
pdData.insert(0, 'Ones', 1)
# dataframe转换成array类型
orig_data = pdData.values
# 数据数量
n = orig_data.shape[0]
# 数据标准化处理
from sklearn import preprocessing as pp
scaled_data = orig_data.copy()
scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])
# 执行逻辑回归
theta = runExpe(scaled_data, n, 'iter', 5000, 0.01)
scaled_X = scaled_data[:, :3]
y = scaled_data[:, 3]
# 预测值
predictions = predict(scaled_X, theta)
# 计算准确率
correct = 0
for num, i in enumerate(predictions):
if i == y[num]:
correct += 1
print('accuracy = {}%'.format(correct / len(predictions)))
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import numpy.random
import time
def show_data():
"""显示原始数据"""
# pdData.head() # 显示头5条
positive = pdData[pdData['Admitted'] == 1]
negative = pdData[pdData['Admitted'] == 0]
fig, ax = plt.subplots(figsize=(10, 5))
ax.scatter(positive['Exam 1'], positive['Exam 2'], s=30, c='b', marker='o', label='Admitted')
ax.scatter(negative['Exam 1'], negative['Exam 2'], s=30, c='r', marker='x', label='Not Admitted')
ax.legend()
ax.set_xlabel('Exam 1 Score')
ax.set_ylabel('Exam 2 Score')
fig.show()
def sigmoid(z):
"""sigmoid函数"""
return 1 / (1 + np.exp(-z))
def model(X, theta):
"""预测函数"""
return sigmoid(np.dot(X, theta.T))
def cost(X, y, theta):
"""损失函数"""
left = np.multiply(-y, np.log(model(X, theta)))
right = np.multiply(1 - y, np.log(1 - model(X, theta)))
return np.sum(left - right) / (len(X))
def gradient(X, y, theta):
"""计算梯度函数"""
# 梯度和θ参数一一对应
grad = np.zeros(theta.shape)
error = (model(X, theta) - y).ravel()
for j in range(len(theta.ravel())):
term = np.multiply(error, X[:, j]) # 都是一维
grad[0, j] = np.sum(term) / len(X)
return grad
def shuffleData(data):
"""洗牌,打乱数据"""
np.random.shuffle(data)
cols = data.shape[1]
X = data[:, 0:cols-1]
y = data[:, cols-1:]
return X, y
def descent(data, batchSize, stopType, thresh, alpha):
"""梯度下降求解"""
# 初始化
init_time = time.time() # 起始时间
i = 0 # 迭代次数
k = 0 # batch
X, y = shuffleData(data) # 洗牌X
theta = np.zeros([1, X.shape[1]]) # θ参数
costs = [cost(X, y, theta)] # 损失值
while True:
grad = gradient(X[k: k+batchSize], y[k: k+batchSize], theta)
k += batchSize
if k >= n:
k = 0
X, y = shuffleData(data) # 重新洗牌
theta = theta - alpha * grad # 参数更新
costs.append(cost(X, y, theta)) # 计算新的损失
i += 1
# 三种停止策略
if (
(stopType == 'iter' and i > thresh) or
(stopType == 'cost' and abs(costs[-1] - costs[-2]) < thresh) or
(stopType == 'grad' and np.linalg.norm(grad) < threshold)
):
break
return theta, i-1, costs, grad, time.time()-init_time
def runExpe(data, batchSize, stopType, thresh, alpha):
theta, iter, costs, grad, dur = descent(data, batchSize, stopType, thresh, alpha)
# 可视化处理
name = "Original" if (data[:, 1] > 2).sum() > 0 else "Scaled"
name += " data - learning rate: {} - ".format(alpha)
if batchSize == n:
strDescType = "Gradient"
elif batchSize == 1:
strDescType = "Stochastic"
else:
strDescType = "Mini-batch ({})".format(batchSize)
name += strDescType + " descent - Stop: "
if stopType == 'iter':
strStop = "{} iterations".format(thresh)
elif stopType == 'cost':
strStop = "costs change < {}".format(thresh)
else:
strStop = "gradient norm < {}".format(thresh)
name += strStop
print("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
name, theta, iter, costs[-1], dur))
fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(np.arange(len(costs)), costs, 'r')
ax.set_xlabel('iterations')
ax.set_ylabel('Cost')
ax.set_title(name.upper() + ' - Error vs. iterations')
fig.show()
return theta
def predict(X, theta):
"""预测值"""
# 设定阈值x
return [1 if x >= 0.5 else 0 for x in model(X, theta)]
path = 'LogiReg_data.txt'
pdData = pd.read_csv(path, header=None, names=['Exam 1', 'Exam 2', 'Admitted'])
# 插入全为1的列
pdData.insert(0, 'Ones', 1)
# dataframe转换成array类型
orig_data = pdData.values
# 数据数量
n = orig_data.shape[0]
# 数据标准化处理
from sklearn import preprocessing as pp
scaled_data = orig_data.copy()
scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])
theta = runExpe(scaled_data, n, 'iter', 5000, 0.01)
scaled_X = scaled_data[:, :3]
y = scaled_data[:, 3]
# 预测值
predictions = predict(scaled_X, theta)
# 计算准确率
correct = 0
for num, i in enumerate(predictions):
if i == y[num]:
correct += 1
print('accuracy = {}%'.format(correct / len(predictions)))
梯度下降三种比较方法
目标函数 J ( θ ) = 1 2 m ∑ i = 1 m ( y i − h θ ( x i ) ) 2 J(\theta) = \frac{1}{2m}\sum\limits_{i=1}^{m} (y^i - h_\theta(x^i))^2 J(θ)=2m1i=1∑m(yi−hθ(xi))2
(容易得到最优解,每次考虑所有样本,速度慢)
(每次一个样本,迭代速度快,但不一定每次朝收敛方向)
(每次更新选择一小部分数据来算,实用!)
似然函数与对数似然函数
似然函数: L ( θ ) = ∏ i = 1 m P ( y i ∣ x i ; θ ) = ∏ i = 1 m ( h θ ( x i ) ) y i ( 1 − h θ ( x i ) ) 1 − y i L(\theta) = \prod_{i=1}^{m}P(y^i | x^i; \theta) = \prod_{i=1}^{m}(h\theta(x^i))^{y^i}(1-h\theta(x^i))^{1-y^i} L(θ)=∏i=1mP(yi∣xi;θ)=∏i=1m(hθ(xi))yi(1−hθ(xi))1−yi
对数似然函数: l ( θ ) = log L ( θ ) = ∑ i = 1 m ( y i log h θ ( x i ) + ( 1 − y i ) log ( 1 − h θ ( x i ) ) ) l(\theta) = \log L(\theta) = \sum\limits_{i=1}^m(y^i \log h_\theta(x^i) + (1-y^i) \log(1-h_\theta(x^i))) l(θ)=logL(θ)=i=1∑m(yiloghθ(xi)+(1−yi)log(1−hθ(xi)))