MQ相关问题

 

目录

为什么使用消息队列

MQ缺点

MQ横向对比

高可用

如何保证消息不被重复消费啊(如何保证消息消费时的幂等性)?

丢数据

 rabbitmq丢数据

kafka丢消息

保证消息顺序

消息积压

kafka积压

activeMQ积压

1 概述

2 消息队列通信图

3 问题定位与分析

3.1 消息通知数据为什么会被积压?

3.2 配置了多个ActiveMQ的消费者为什么数据积压还是无法缓解?

3.3 去掉synchronized同步锁会产生多线程并发的安全性问题吗?

3.4 消息会被重复多次消费吗?

4 阶段一优化方案

4.1 准备测试数据

4.2 优化前性能测试

4.3 优化后性能测试

4.3.1 取消同步锁

4.3.2 取消同步锁后的性能测试

4.3.3 优化ActiveMQ的queuePrefetch 参数

4.3.4 优化queuePrefetch参数后的性能测试

4.3.5 结论

5 阶段二优化方案

5.1 单队列处理

5.2 双队列处理

6 阶段三优化方案

6.1 MQ组件重选型

7 总结


 


 

使用MQ场景之一

比如我们有个订单系统,订单系统会每次下一个新的订单的时候,就会发送时一条消息到ActiveMQ里面去,后台有个库存系统负责获取了消息然后更新库存。

为什么使用消息队列

解耦、异步、削峰

解耦:现场画个图来说明一下,A系统发送个数据到BCD三个系统,接口调用发送,那如果E系统也要这个数据呢?那如果C系统现在不需要了呢?现在A系统又要发送第二种数据了呢?A系统负责人濒临崩溃中。。。再来点更加崩溃的事儿,A系统要时时刻刻考虑BCDE四个系统如果挂了咋办?我要不要重发?我要不要把消息存起来?头发都白了啊。。。

MQ相关问题_第1张图片

MQ相关问题_第2张图片

面试技巧:你需要去考虑一下你负责的系统中是否有类似的场景,就是一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用MQ给他异步化解耦,也是可以的,你就需要去考虑在你的项目里,是不是可以运用这个MQ去进行系统的解耦。在简历中体现出来这块东西,用MQ作解耦。

异步:现场画个图来说明一下,A系统接收一个请求,需要在自己本地写库,还需要在BCD三个系统写库,自己本地写库要3ms,BCD三个系统分别写库要300ms、450ms、200ms。最终请求总延时是3 + 300 + 450 + 200 = 953ms,接近1s,用户感觉搞个什么东西,慢死了慢死了。

同步高延时:

MQ相关问题_第3张图片

解耦后性能优化

MQ相关问题_第4张图片

削峰:每天0点到11点,A系统风平浪静,每秒并发请求数量就100个。结果每次一到11点~1点,每秒并发请求数量突然会暴增到1万条。但是系统最大的处理能力就只能是每秒钟处理1000个请求啊。。。尴尬了,系统会死。。。

 

MQ相关问题_第5张图片

应对高峰

MQ相关问题_第6张图片

 

MQ缺点

系统可用性降低:系统引入的外部依赖越多,越容易挂掉,本来你就是A系统调用BCD三个系统的接口就好了,人ABCD四个系统好好的,没啥问题,你偏加个MQ进来,万一MQ挂了咋整?MQ挂了,整套系统崩溃了,你不就完了么。

 

系统复杂性提高:硬生生加个MQ进来,你怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?头大头大,问题一大堆,痛苦不已

 

一致性问题:A系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是BCD三个系统那里,BD两个系统写库成功了,结果C系统写库失败了,咋整?你这数据就不一致了。

 

所以消息队列实际是一种非常复杂的架构,你引入它有很多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉,最好之后,你会发现,妈呀,系统复杂度提升了一个数量级,也许是复杂了10倍。但是关键时刻,用,还是得用的。。。

 

MQ相关问题_第7张图片

 

 

MQ横向对比

特性

ActiveMQ

RabbitMQ

RocketMQ

Kafka

单机吞吐量

万级,吞吐量比RocketMQ和Kafka要低了一个数量级

万级,吞吐量比RocketMQ和Kafka要低了一个数量级

10万级,RocketMQ也是可以支撑高吞吐的一种MQ

10万级别,这是kafka最大的优点,就是吞吐量高。

 

一般配合大数据类的系统来进行实时数据计算、日志采集等场景

topic数量对吞吐量的影响

 

 

topic可以达到几百,几千个的级别,吞吐量会有较小幅度的下降

 

这是RocketMQ的一大优势,在同等机器下,可以支撑大量的topic

topic从几十个到几百个的时候,吞吐量会大幅度下降

 

所以在同等机器下,kafka尽量保证topic数量不要过多。如果要支撑大规模topic,需要增加更多的机器资源

时效性

ms级

微秒级,这是rabbitmq的一大特点,延迟是最低的

ms级

延迟在ms级以内

可用性

高,基于主从架构实现高可用性

高,基于主从架构实现高可用性

非常高,分布式架构

非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用

消息可靠性

有较低的概率丢失数据

 

经过参数优化配置,可以做到0丢失

经过参数优化配置,消息可以做到0丢失

功能支持

MQ领域的功能极其完备

基于erlang开发,所以并发能力很强,性能极其好,延时很低

MQ功能较为完善,还是分布式的,扩展性好

功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用,是事实上的标准

优劣势总结

非常成熟,功能强大,在业内大量的公司以及项目中都有应用

 

偶尔会有较低概率丢失消息

 

而且现在社区以及国内应用都越来越少,官方社区现在对ActiveMQ 5.x维护越来越少,几个月才发布一个版本

 

而且确实主要是基于解耦和异步来用的,较少在大规模吞吐的场景中使用

 

erlang语言开发,性能极其好,延时很低;

 

吞吐量到万级,MQ功能比较完备

 

而且开源提供的管理界面非常棒,用起来很好用

 

社区相对比较活跃,几乎每个月都发布几个版本分

 

在国内一些互联网公司近几年用rabbitmq也比较多一些

 

但是问题也是显而易见的,RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重。

 

而且erlang开发,国内有几个公司有实力做erlang源码级别的研究和定制?如果说你没这个实力的话,确实偶尔会有一些问题,你很难去看懂源码,你公司对这个东西的掌控很弱,基本职能依赖于开源社区的快速维护和修复bug。

 

而且rabbitmq集群动态扩展会很麻烦,不过这个我觉得还好。其实主要是erlang语言本身带来的问题。很难读源码,很难定制和掌控。

接口简单易用,而且毕竟在阿里大规模应用过,有阿里品牌保障

 

日处理消息上百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是ok的,还可以支撑大规模的topic数量,支持复杂MQ业务场景

 

而且一个很大的优势在于,阿里出品都是java系的,我们可以自己阅读源码,定制自己公司的MQ,可以掌控

 

社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准JMS规范走的有些系统要迁移需要修改大量代码

 

还有就是阿里出台的技术,你得做好这个技术万一被抛弃,社区黄掉的风险,那如果你们公司有技术实力我觉得用RocketMQ挺好的

kafka的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展

 

同时kafka最好是支撑较少的topic数量即可,保证其超高吞吐量

 

而且kafka唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略

 

这个特性天然适合大数据实时计算以及日志收集

 

高可用

(1)RabbitMQ的高可用性

 

RabbitMQ是比较有代表性的,因为是基于主从做高可用性的,我们就以他为例子讲解第一种MQ的高可用性怎么实现。

 

rabbitmq有三种模式:单机模式,普通集群模式,镜像集群模式

 

1)单机模式

 

就是demo级别的,一般就是你本地启动了玩玩儿的,没人生产用单机模式

 

2)普通集群模式

 

意思就是在多台机器上启动多个rabbitmq实例,每个机器启动一个。但是你创建的queue,只会放在一个rabbtimq实例上,但是每个实例都同步queue的元数据。完了你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从queue所在实例上拉取数据过来。

 

这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个queue所在实例消费数据,前者有数据拉取的开销,后者导致单实例性能瓶颈。

 

而且如果那个放queue的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你开启了消息持久化,让rabbitmq落地存储消息的话,消息不一定会丢,得等这个实例恢复了,然后才可以继续从这个queue拉取数据。

 

所以这个事儿就比较尴尬了,这就没有什么所谓的高可用性可言了,这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个queue的读写操作。

 

3)镜像集群模式

 

这种模式,才是所谓的rabbitmq的高可用模式,跟普通集群模式不一样的是,你创建的queue,无论元数据还是queue里的消息都会存在于多个实例上,然后每次你写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。

MQ相关问题_第8张图片

这样的话,好处在于,你任何一个机器宕机了,没事儿,别的机器都可以用。坏处在于,第一,这个性能开销也太大了吧,消息同步所有机器,导致网络带宽压力和消耗很重!第二,这么玩儿,就没有扩展性可言了,如果某个queue负载很重,你加机器,新增的机器也包含了这个queue的所有数据,并没有办法线性扩展你的queue

 

那么怎么开启这个镜像集群模式呢?我这里简单说一下,避免面试人家问你你不知道,其实很简单rabbitmq有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候可以要求数据同步到所有节点的,也可以要求就同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。

 

(2)kafka的高可用性

 

kafka一个最基本的架构认识:多个broker组成,每个broker是一个节点;你创建一个topic,这个topic可以划分为多个partition,每个partition可以存在于不同的broker上,每个partition就放一部分数据。

 

这就是天然的分布式消息队列,就是说一个topic的数据,是分散放在多个机器上的,每个机器就放一部分数据。

 

实际上rabbitmq之类的,并不是分布式消息队列,他就是传统的消息队列,只不过提供了一些集群、HA的机制而已,因为无论怎么玩儿,rabbitmq一个queue的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个queue的完整数据。

 

kafka 0.8以前,是没有HA机制的,就是任何一个broker宕机了,那个broker上的partition就废了,没法写也没法读,没有什么高可用性可言。

 

kafka 0.8以后,提供了HA机制,就是replica副本机制。每个partition的数据都会同步到吉他机器上,形成自己的多个replica副本。然后所有replica会选举一个leader出来,那么生产和消费都跟这个leader打交道,然后其他replica就是follower。写的时候,leader会负责把数据同步到所有follower上去,读的时候就直接读leader上数据即可。只能读写leader?很简单,要是你可以随意读写每个follower,那么就要care数据一致性的问题,系统复杂度太高,很容易出问题。kafka会均匀的将一个partition的所有replica分布在不同的机器上,这样才可以提高容错性。

 

这么搞,就有所谓的高可用性了,因为如果某个broker宕机了,没事儿,那个broker上面的partition在其他机器上都有副本的,如果这上面有某个partition的leader,那么此时会重新选举一个新的leader出来,大家继续读写那个新的leader即可。这就有所谓的高可用性了。

 

写数据的时候,生产者就写leader,然后leader将数据落地写本地磁盘,接着其他follower自己主动从leader来pull数据。一旦所有follower同步好数据了,就会发送ack给leader,leader收到所有follower的ack之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为)

 

消费的时候,只会从leader去读,但是只有一个消息已经被所有follower都同步成功返回ack的时候,这个消息才会被消费者读到。

 

实际上这块机制,讲深了,是可以非常之深入的,但是我还是回到我们这个课程的主题和定位,聚焦面试,至少你听到这里大致明白了kafka是如何保证高可用机制的了,对吧?不至于一无所知,现场还能给面试官画画图。要遇上面试官确实是kafka高手,深挖了问,那你只能说不好意思,太深入的你没研究过。

 

但是大家一定要明白,这个事情是要权衡的,你现在是要快速突击常见面试题体系,而不是要深入学习kafka,要深入学习kafka,你是没那么多时间的。你只能确保,你之前也许压根儿不知道这块,但是现在你知道了,面试被问到,你大概可以说一说。然后很多其他的候选人,也许还不如你,没看过这个,被问到了压根儿答不出来,相比之下,你还能说点出来,大概就是这个意思了。

MQ相关问题_第9张图片

 

 

如何保证消息不被重复消费啊(如何保证消息消费时的幂等性)?

kafka实际上有个offset的概念,就是每个消息写进去,都有一个offset,代表他的序号,然后consumer消费了数据之后,每隔一段时间,会把自己消费过的消息的offset提交一下,代表我已经消费过了,下次我要是重启啥的,你就让我继续从上次消费到的offset来继续消费吧。

 

但是凡事总有意外,比如我们之前生产经常遇到的,就是你有时候重启系统,看你怎么重启了,如果碰到点着急的,直接kill进程了,再重启。这会导致consumer有些消息处理了,但是没来得及提交offset,尴尬了。重启之后,少数消息会再次消费一次。

 

其实重复消费不可怕,可怕的是你没考虑到重复消费之后,怎么保证幂等性。

 

给你举个例子吧。假设你有个系统,消费一条往数据库里插入一条,要是你一个消息重复两次,你不就插入了两条,这数据不就错了?但是你要是消费到第二次的时候,自己判断一下已经消费过了,直接扔了,不就保留了一条数据?

 

一条数据重复出现两次,数据库里就只有一条数据,这就保证了系统的幂等性

 

幂等性,我通俗点说,就一个数据,或者一个请求,给你重复来多次,你得确保对应的数据是不会改变的,不能出错。

 

那所以第二个问题来了,怎么保证消息队列消费的幂等性?

 

其实还是得结合业务来思考,我这里给几个思路:

 

(1)比如你拿个数据要写库,你先根据主键查一下,如果这数据都有了,你就别插入了,update一下好吧

 

(2)比如你是写redis,那没问题了,反正每次都是set,天然幂等性

 

(3)比如你不是上面两个场景,那做的稍微复杂一点,你需要让生产者发送每条数据的时候,里面加一个全局唯一的id,类似订单id之类的东西,然后你这里消费到了之后,先根据这个id去比如redis里查一下,之前消费过吗?如果没有消费过,你就处理,然后这个id写redis。如果消费过了,那你就别处理了,保证别重复处理相同的消息即可。

 

还有比如基于数据库的唯一键来保证重复数据不会重复插入多条,我们之前线上系统就有这个问题,就是拿到数据的时候,每次重启可能会有重复,因为kafka消费者还没来得及提交offset,重复数据拿到了以后我们插入的时候,因为有唯一键约束了,所以重复数据只会插入报错,不会导致数据库中出现脏数据

 

如何保证MQ的消费是幂等性的,需要结合具体的业务来看

丢数据

rabbitmq这种mq,一般来说都是承载公司的核心业务的,数据是绝对不能弄丢的

 

  1.  rabbitmq丢数据

 

1)生产者弄丢了数据

 

生产者将数据发送到rabbitmq的时候,可能数据就在半路给搞丢了,因为网络啥的问题,都有可能。

 

此时可以选择用rabbitmq提供的事务功能,就是生产者发送数据之前开启rabbitmq事务(channel.txSelect),然后发送消息,如果消息没有成功被rabbitmq接收到,那么生产者会收到异常报错,此时就可以回滚事务(channel.txRollback),然后重试发送消息;如果收到了消息,那么可以提交事务(channel.txCommit)。但是问题是,rabbitmq事务机制一搞,基本上吞吐量会下来,因为太耗性能。

 

所以一般来说,如果你要确保说写rabbitmq的消息别丢,可以开启confirm模式,在生产者那里设置开启confirm模式之后,你每次写的消息都会分配一个唯一的id,然后如果写入了rabbitmq中,rabbitmq会给你回传一个ack消息,告诉你说这个消息ok了。如果rabbitmq没能处理这个消息,会回调你一个nack接口,告诉你这个消息接收失败,你可以重试。而且你可以结合这个机制自己在内存里维护每个消息id的状态,如果超过一定时间还没接收到这个消息的回调,那么你可以重发。

 

事务机制和cnofirm机制最大的不同在于,事务机制是同步的,你提交一个事务之后会阻塞在那儿,但是confirm机制是异步的,你发送个消息之后就可以发送下一个消息,然后那个消息rabbitmq接收了之后会异步回调你一个接口通知你这个消息接收到了。

 

所以一般在生产者这块避免数据丢失,都是用confirm机制的。

 

2)rabbitmq弄丢了数据

 

就是rabbitmq自己弄丢了数据,这个你必须开启rabbitmq的持久化,就是消息写入之后会持久化到磁盘,哪怕是rabbitmq自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。除非极其罕见的是,rabbitmq还没持久化,自己就挂了,可能导致少量数据会丢失的,但是这个概率较小。

 

设置持久化有两个步骤,第一个是创建queue的时候将其设置为持久化的,这样就可以保证rabbitmq持久化queue的元数据,但是不会持久化queue里的数据;第二个是发送消息的时候将消息的deliveryMode设置为2,就是将消息设置为持久化的,此时rabbitmq就会将消息持久化到磁盘上去。必须要同时设置这两个持久化才行,rabbitmq哪怕是挂了,再次重启,也会从磁盘上重启恢复queue,恢复这个queue里的数据。

 

而且持久化可以跟生产者那边的confirm机制配合起来,只有消息被持久化到磁盘之后,才会通知生产者ack了,所以哪怕是在持久化到磁盘之前,rabbitmq挂了,数据丢了,生产者收不到ack,你也是可以自己重发的。

 

哪怕是你给rabbitmq开启了持久化机制,也有一种可能,就是这个消息写到了rabbitmq中,但是还没来得及持久化到磁盘上,结果不巧,此时rabbitmq挂了,就会导致内存里的一点点数据会丢失。

 

3)消费端弄丢了数据

 

rabbitmq如果丢失了数据,主要是因为你消费的时候,刚消费到,还没处理,结果进程挂了,比如重启了,那么就尴尬了,rabbitmq认为你都消费了,这数据就丢了。

 

这个时候得用rabbitmq提供的ack机制,简单来说,就是你关闭rabbitmq自动ack,可以通过一个api来调用就行,然后每次你自己代码里确保处理完的时候,再程序里ack一把。这样的话,如果你还没处理完,不就没有ack?那rabbitmq就认为你还没处理完,这个时候rabbitmq会把这个消费分配给别的consumer去处理,消息是不会丢的。

 

 

  1. kafka丢消息

 

1)消费端弄丢了数据

 

唯一可能导致消费者弄丢数据的情况,就是说,你那个消费到了这个消息,然后消费者那边自动提交了offset,让kafka以为你已经消费好了这个消息,其实你刚准备处理这个消息,你还没处理,你自己就挂了,此时这条消息就丢咯。

 

这不是一样么,大家都知道kafka会自动提交offset,那么只要关闭自动提交offset,在处理完之后自己手动提交offset,就可以保证数据不会丢。但是此时确实还是会重复消费,比如你刚处理完,还没提交offset,结果自己挂了,此时肯定会重复消费一次,自己保证幂等性就好了。

 

生产环境碰到的一个问题,就是说我们的kafka消费者消费到了数据之后是写到一个内存的queue里先缓冲一下,结果有的时候,你刚把消息写入内存queue,然后消费者会自动提交offset。

 

然后此时我们重启了系统,就会导致内存queue里还没来得及处理的数据就丢失了

 

2)kafka弄丢了数据

 

这块比较常见的一个场景,就是kafka某个broker宕机,然后重新选举partiton的leader时。大家想想,要是此时其他的follower刚好还有些数据没有同步,结果此时leader挂了,然后选举某个follower成leader之后,他不就少了一些数据?这就丢了一些数据啊。

 

生产环境也遇到过,我们也是,之前kafka的leader机器宕机了,将follower切换为leader之后,就会发现说这个数据就丢了

 

所以此时一般是要求起码设置如下4个参数:

 

给这个topic设置replication.factor参数:这个值必须大于1,要求每个partition必须有至少2个副本

 

在kafka服务端设置min.insync.replicas参数:这个值必须大于1,这个是要求一个leader至少感知到有至少一个follower还跟自己保持联系,没掉队,这样才能确保leader挂了还有一个follower吧

 

在producer端设置acks=all:这个是要求每条数据,必须是写入所有replica之后,才能认为是写成功了

 

在producer端设置retries=MAX(很大很大很大的一个值,无限次重试的意思):这个是要求一旦写入失败,就无限重试,卡在这里了

 

我们生产环境就是按照上述要求配置的,这样配置之后,至少在kafka broker端就可以保证在leader所在broker发生故障,进行leader切换时,数据不会丢失

 

3)生产者会不会弄丢数据

 

如果按照上述的思路设置了ack=all,一定不会丢,要求是,你的leader接收到消息,所有的follower都同步到了消息之后,才认为本次写成功了。如果没满足这个条件,生产者会自动不断的重试,重试无限次。

MQ相关问题_第10张图片

保证消息顺序

我举个例子,我们以前做过一个mysql binlog同步的系统,压力还是非常大的,日同步数据要达到上亿。mysql -> mysql,常见的一点在于说大数据team,就需要同步一个mysql库过来,对公司的业务系统的数据做各种复杂的操作。

你在mysql里增删改一条数据,对应出来了增删改3条binlog,接着这三条binlog发送到MQ里面,到消费出来依次执行,起码得保证人家是按照顺序来的吧?不然本来是:增加、修改、删除;你楞是换了顺序给执行成删除、修改、增加,不全错了么。

 

本来这个数据同步过来,应该最后这个数据被删除了;结果你搞错了这个顺序,最后这个数据保留下来了,数据同步就出错了。

 

先看看顺序会错乱的俩场景

 

(1)rabbitmq:一个queue,多个consumer,这不明显乱了

(2)kafka:一个topic,一个partition,一个consumer,内部多线程,这不也明显乱了

 

那如何保证消息的顺序性呢?简单简单

MQ相关问题_第11张图片

(1)rabbitmq:拆分多个queue,每个queue一个consumer,就是多一些queue而已,确实是麻烦点;或者就一个queue但是对应一个consumer,然后这个consumer内部用内存队列做排队,然后分发给底层不同的worker来处理

MQ相关问题_第12张图片

(2)kafka:一个topic,一个partition,一个consumer,内部单线程消费,写N个内存queue,然后N个线程分别消费一个内存queue即可

 

MQ相关问题_第13张图片

MQ相关问题_第14张图片

消息积压

kafka积压

一个消费者一秒是1000条,一秒3个消费者是3000条,一分钟是18万条,1000多万条

 

所以如果你积压了几百万到上千万的数据,即使消费者恢复了,也需要大概1小时的时间才能恢复过来

 

一般这个时候,只能操作临时紧急扩容了,具体操作步骤和思路如下:

 

1)先修复consumer的问题,确保其恢复消费速度,然后将现有cnosumer都停掉

2)新建一个topic,partition是原来的10倍,临时建立好原先10倍或者20倍的queue数量

3)然后写一个临时的分发数据的consumer程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的10倍数量的queue

4)接着临时征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的数据

5)这种做法相当于是临时将queue资源和consumer资源扩大10倍,以正常的10倍速度来消费数据

6)等快速消费完积压数据之后,得恢复原先部署架构,重新用原先的consumer机器来消费消息

 

(2)这里我们假设再来第二个坑

 

假设你用的是rabbitmq,rabbitmq是可以设置过期时间的,就是TTL,如果消息在queue中积压超过一定的时间就会被rabbitmq给清理掉,这个数据就没了。那这就是第二个坑了。这就不是说数据会大量积压在mq里,而是大量的数据会直接搞丢。

 

这个情况下,就不是说要增加consumer消费积压的消息,因为实际上没啥积压,而是丢了大量的消息。我们可以采取一个方案,就是批量重导,这个我们之前线上也有类似的场景干过。就是大量积压的时候,我们当时就直接丢弃数据了,然后等过了高峰期以后,比如大家一起喝咖啡熬夜到晚上12点以后,用户都睡觉了。

 

这个时候我们就开始写程序,将丢失的那批数据,写个临时程序,一点一点的查出来,然后重新灌入mq里面去,把白天丢的数据给他补回来。也只能是这样了。

 

假设1万个订单积压在mq里面,没有处理,其中1000个订单都丢了,你只能手动写程序把那1000个订单给查出来,手动发到mq里去再补一次

 

(3)然后我们再来假设第三个坑

 

如果走的方式是消息积压在mq里,那么如果你很长时间都没处理掉,此时导致mq都快写满了,咋办?这个还有别的办法吗?没有,谁让你第一个方案执行的太慢了,你临时写程序,接入数据来消费,消费一个丢弃一个,都不要了,快速消费掉所有的消息。然后走第二个方案,到了晚上再补数据吧。

另外,参见:https://www.jianshu.com/p/4e00dff97f39  消息积压

 

 

activeMQ积压

1 概述

最近生产环境的消息通知队列发生了大量的数据积压问题,从而影响到整个平台商户的交易无法正常进行,最后只能通过临时关闭交易量较大的商户来缓解消息队列积压的问题,经线上数据分析,我们的消息队列在面对交易突发洪峰的情况下无法快速的消费并处理队列中的数据,考虑到后续还会出现各种交易量突发状况,以下为针对消息队列(ActiveMQ)的优化过程。

 

2 消息队列通信图

MQ相关问题_第15张图片

3 问题定位与分析

 

3.1 消息通知数据为什么会被积压?

分析:平台中每个交易的发生可能会产生一到多条的消息通知数据,这些通知数据会通过消息队列(ActiveMQ)来中转消费并处理,那么在交易量突发洪峰的情况下会产生大量的消息通知数据,如果消息队列(ActiveMQ)的消费能力被阻塞的话会严重影响到数据的吞吐量,从而积压大量数据无法被快速处理!

 

3.2 配置了多个ActiveMQ的消费者为什么数据积压还是无法缓解?

分析:经过分析消息队列的数据消费处理模块的代码,消息的消费处理是通过监听器SessionAwareMessageListener异步回调onMessage方法而接收消息的,但是在回调的方法onMessage上加了synchronized同步锁,问题就在这里,由于整个onMessage方法被锁,导致程序只能通过串行(一次只能消费一条数据)处理数据,而无法通过多线程并发处理数据,从而影响了整个队列的数据消费能力。

public synchronized void onMessage(Message message, Session session)

3.3 去掉synchronized同步锁会产生多线程并发的安全性问题吗?

分析:首先多个消费者并发处理的数据是不同的,而且多个消费者线程并发回调onMessage方法的时候并未使用到共享的变量,全部在各自线程的方法栈中,所以理论上不会出现多线程并发产生的安全性问题。

 

3.4 消息会被重复多次消费吗?

分析:

(1)通过分析ActiveMQ的消费者消息接收处理的源代码发现,一条消息是否已经消费是通过ack确认机制来保证的,如果是通过异步回调的方式接收消息的话,在onMessage回调函数返回之后会立即进行ack确认提交,那么只要保证onMessage函数内部不抛出异常,及需要内部捕获异常,那么消息就不会被重复消息。

(2)因为我们的系统在接收到消息后会首先存入db中进行持久化,而且每条消息在存入数据库的时候都做了唯一性约束,那么即使有重复的消息也不会被正常处理。

 

4 阶段一优化方案

 

4.1 准备测试数据

启动多个线程分别往MQ消息队列中发送数据,共发送15000个消息,然后启动消费者模块消费消息,设定每个消息处理耗时为10ms,配置ActiveMQ的消费者数量为concurrency = 5-100

 

4.2 优化前性能测试

 测试次数   是否并发处理    消息数量

queuePrefetch

consumers 耗时
     1          否     15000         1000         15 151s
     2          否     15000         1000         16 151s
     3          否     15000         1000         15 151s

优化前通过测试数据发现,虽然配置了concurrency = 5-100 (消费者动态伸缩),但是只有15个消费者在忙碌,而且消息都是串行化执行的,15000条消息共需要151s的时间,效率非常差,ps:哈哈,不知道是哪位开发的大神加的同步锁!

注:queuePrefetch 为MQ的消费者一次从Queue中拉取的数量,默认为1000,consumers为处理消息的消费者数量

 

4.3 优化后性能测试

 

4.3.1 取消同步锁

取消在监听器的回调方法onMessage上的synchronized同步锁

 

4.3.2 取消同步锁后的性能测试

 测试次数   是否并发处理    消息数量

queuePrefetch

consumers 耗时
     1          是     15000         1000         14  13s
     2          是     15000         1000         15  13s
     3          是     15000         1000         15  13s

通过以上数据发现取消同步锁,15000条消息只需要13s就可以处理完,相比之前快了近12倍,虽然速度提升了不少,但是发现配置了5-100的消费者,确只有15个消费者在忙碌,其他消费者都没有消息可处理,及造成了数据倾斜,那么接下来就要通过优化queuePrefetch 参数了。

 

4.3.3 优化ActiveMQ的queuePrefetch 参数

预获取消息数量是MQ中重要的调优参数之一,为了提高网络的传输效率,ActiveMQ默认给Consumer批量push 1000条消息,可以从ActiveMQ源码中的ActiveMQPrefetchPolicy类的DEFAULT_QUEUE_PREFETCH字段得知,考虑到我们的通知消息的消费处理中涉及到数据库的操作,以及综合网络传输效率,这里将queuePrefetch的值设置为100,具体需配置到ActiveMQ的连接地址后,如:

tcp://localhost:61616?jms.prefetchPolicy.queuePrefetch=100

4.3.4 优化queuePrefetch参数后的性能测试

 测试次数   是否并发处理    消息数量

queuePrefetch

consumers 耗时
     1          是     15000          100         40  7s
     2          是     15000          100         47  5s
     3          是     15000          100         41  6s

将ActiveMQ的queuePrefetch参数修改为100,那么发现有近一半的消费者在处理数据,最后15000条消息需要6s中就可以处理完成。

 

4.3.5 结论

通过以上两步的优化后的测试结果可以得出,取消同步锁之后队列的消费能力提升了近11倍,在取消同步锁的基础上再优化ActiveMQ批处理参数后性能又提升了近1倍,综合以上两步的优化处理,队列整体的消费能力提高了30多倍。

MQ相关问题_第16张图片

 

5 阶段二优化方案

阶段二的优化方案是在阶段一的基础上进行的优化处理

 

5.1 单队列处理

MQ相关问题_第17张图片

 

由于我们的消息通知业务属于幂等性操作,会按照设定的通知次数来反复通知处理,直到通知成功为止,我们系统现在的做法是将接收到MQ的消息暂存于延时队列(DelayQueue)中,然后通过多线程轮训取出,然后通过HTTP通知到其他模块处理,如果通知失败,则重新放入同一个延时队列等待下次执行,如上图:消息1通知失败后会重新放入延时队列。

注:单队列处理的不足

由于使用了单队列处理,使得可以一次通知成功的消息与通知多次失败的消息混合在了一起,这样在队列中失败通知的消息就会阻塞到后续可以正常通知的消息,最终导致消息整体的一个吞吐量下降

5.2 双队列处理

MQ相关问题_第18张图片

 

针对5.1单队列的不足,我们可以重新设计,将单队列设计为双队列处理,双队列的核心思想为如果队列1中的消息通知失败,则不再重新放入队列1,而是放入队列2去通知,这样可以起到消息数据分离的作用,及失败通知的数据不再会影响到后续可以成功通知的消息,从而提高队列消息通知的整体性能!

 

6 阶段三优化方案

 

6.1 MQ组件重选型

ActiveMQ是一个老牌的消息队列组件,吞吐量方面表现不是很理想,适合在业务量不大的场景中使用,现在有非常多比较成熟及高性能高吞吐的消息队列组件可供我们选择,如:RabbitMQ、RocketMQ、Kafka,后续可根据实际情况考虑替换掉ActiveMQ组件。

 

7 总结

针对消息队列的数据积压问题,我们主要做了三个方面的优化处理,取消同步锁、ActiveMQ参数优化、本地双队列优化,通过这三个方面的优化基本解决了队列数据积压的问题。

文章来源:https://my.oschina.net/feinik/blog/1674168

你可能感兴趣的:(架构)