一个 Netty 服务端配置启动代码如下,其大略的流程为以下几个步骤:
- 创建 NioEventLoopGroup 实例,这个类是 Netty 的 Reactor 线程池实现之一,其实际为 EventLoop 的容器,而 EventLoop 的主要职责是处理所有注册到本线程多路复用器 Selector 上的 Channel。代码中创建了两个 NioEventLoopGroup 实例,这是 主从 Reactor 多线程模式 的体现
- 创建 ServerBootstrap 实例,该类是 Netty 服务端的启动辅助类,提供一系列方法用于设置服务端启动相关的参数
- ServerBootstrap 对象调用 group() 方法设置并绑定主从 Reactor 线程池
- ServerBootstrap 对象调用 channel() 方法设置服务端 Channel 实例类型
- ServerBootstrap 对象调用 handler() 方法设置服务端 MainReactor 线程池业务处理器
- ServerBootstrap 对象调用带 child 前缀的方法设置服务端 SubReactor 线程池配置,比如 childHandler() 方法设置SubReactor 线程池业务处理器
- ServerBootstrap 对象调用 bind() 方法绑定并启动监听端口
public class NettyServer {
private static final int DEFAULT_PORT = 10086;
public static void start() {
new Thread(() -> {
// 创建监听线程组, 监听客户端请求
NioEventLoopGroup bossGroup = new NioEventLoopGroup();
// 创建工作线程组, 处理请求
NioEventLoopGroup workerGroup = new NioEventLoopGroup();
// 服务器辅助启动类配置
new ServerBootstrap().group(bossGroup, workerGroup)
// 设置 channel 类型为NIO类型
.channel(NioServerSocketChannel.class)
// 设置连接配置参数
.option(ChannelOption.SO_BACKLOG, 1024)
.handler(new LoggingHandler())
.childOption(ChannelOption.SO_KEEPALIVE, true)
.childOption(ChannelOption.TCP_NODELAY, true)
// 配置入站、出站事件handler
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) {
// 配置入站、出站事件channel
ch.pipeline()
.addLast(new LineBasedFrameDecoder(1024))
.addLast(new StringDecoder(CharsetUtil.UTF_8))
.addLast(new StringEncoder(CharsetUtil.UTF_8))
.addLast(new ServerHandler());
}
})
// 绑定端口
.bind(DEFAULT_PORT)
.addListener(future -> {
if (future.isSuccess()) {
System.out.println(new Date() + ": 端口[" + DEFAULT_PORT + "]绑定成功!");
} else {
System.err.println("端口[" + DEFAULT_PORT + "]绑定失败!");
}
});
}, "Server").start();
}
}
服务端启动流程图如下,各组件间的关系可参考 Netty源码分析(1)-核心组件与架构,其主要流程可以分为以下几个部分:
- 事件分发组件的配置及初始化
- 业务处理组件 Channel 的初始化及注册,注册过程即事件循环线程的启动过程
- 绑定服务端 ServerSocketChannel 到指定的端口
这部分对应以上流程图步骤 1-5,其中比较关键的流程如下:
new NioEventLoopGroup()
创建 Reactor 线程池实例,其关键逻辑在父类 MultithreadEventExecutorGroup
的构造方法中,重要步骤如下:
new ThreadPerTaskExecutor(new DefaultThreadFactory())
生成 Executor 实例,并指定其线程工厂- 调用
newChild()
方法为当前 group 新建 NioEventLoop 实例,并指定其 Executor 入参为 ThreadPerTaskExecutor 对象,该对象后续将用于创建和启动 EventLoop 线程- 如果有一个 NioEventLoop 实例新建失败,调用已创建的每个 NioEventLoop 实例的 shutdownGracefully() 方法启动事件循环线程
protected MultithreadEventExecutorGroup(int nThreads, Executor executor,
EventExecutorChooserFactory chooserFactory, Object... args) {
if (nThreads <= 0) {
throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));
}
if (executor == null) {
// #1
executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
}
children = new EventExecutor[nThreads];
for (int i = 0; i < nThreads; i ++) {
boolean success = false;
try {
// #2
children[i] = newChild(executor, args);
success = true;
} catch (Exception e) {
// TODO: Think about if this is a good exception type
throw new IllegalStateException("failed to create a child event loop", e);
} finally {
if (!success) {
for (int j = 0; j < i; j ++) {
// #3
children[j].shutdownGracefully();
}
for (int j = 0; j < i; j ++) {
EventExecutor e = children[j];
try {
while (!e.isTerminated()) {
e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
}
} catch (InterruptedException interrupted) {
// Let the caller handle the interruption.
Thread.currentThread().interrupt();
break;
}
}
}
}
}
chooser = chooserFactory.newChooser(children);
final FutureListener<Object> terminationListener = new FutureListener<Object>() {
@Override
public void operationComplete(Future<Object> future) throws Exception {
if (terminatedChildren.incrementAndGet() == children.length) {
terminationFuture.setSuccess(null);
}
}
};
for (EventExecutor e: children) {
e.terminationFuture().addListener(terminationListener);
}
Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length);
Collections.addAll(childrenSet, children);
readonlyChildren = Collections.unmodifiableSet(childrenSet);
}
new ServerBootstrap().group(bossGroup, workerGroup)
新建 ServerBootstrap 对象,并调用其 group()
方法配置好主从 Reactor 线程池。其中 MainReactor 线程池将会保存在 AbstractBootstrap.group 变量
,SubReactor 线程池以 ServerBootstrap.childGroup 变量
保存
public ServerBootstrap group(EventLoopGroup parentGroup, EventLoopGroup childGroup) {
super.group(parentGroup);
if (childGroup == null) {
throw new NullPointerException("childGroup");
}
if (this.childGroup != null) {
throw new IllegalStateException("childGroup set already");
}
this.childGroup = childGroup;
return this;
}
ServerBootstrap#channel()
方法实际配置了一个 ReflectiveChannelFactory
工厂类,用于创建指定的 NioServerSocketChannel 对象
public B channel(Class<? extends C> channelClass) {
if (channelClass == null) {
throw new NullPointerException("channelClass");
}
return channelFactory(new ReflectiveChannelFactory<C>(channelClass));
}
public B channelFactory(ChannelFactory<? extends C> channelFactory) {
if (channelFactory == null) {
throw new NullPointerException("channelFactory");
}
if (this.channelFactory != null) {
throw new IllegalStateException("channelFactory set already");
}
this.channelFactory = channelFactory;
return self();
}
以 ServerBootstrap#childHandler()
方法为例,带 child 前缀的方法都用来配置 SubReactor 线程池所需的处理器等,这些配置在 MainReactor 将连接注册到 SubReactor 上之后 IO 读写会用到
public ServerBootstrap childHandler(ChannelHandler childHandler) {
if (childHandler == null) {
throw new NullPointerException("childHandler");
}
this.childHandler = childHandler;
return this;
}
ServerBootstrap#bind()
方法实际调用到 AbstractBootstrap#doBind()
方法,这个方法是整个服务端启动的入口,主要分为了以下 2 个部分,本节主要分析 initAndRegister()
流程
initAndRegister()
初始化 Channel,并将其注册到 Selector 上doBind0()
将 Channel 绑定监听指定端口
private ChannelFuture doBind(final SocketAddress localAddress) {
final ChannelFuture regFuture = initAndRegister();
final Channel channel = regFuture.channel();
if (regFuture.cause() != null) {
return regFuture;
}
if (regFuture.isDone()) {
// At this point we know that the registration was complete and successful.
ChannelPromise promise = channel.newPromise();
doBind0(regFuture, channel, localAddress, promise);
return promise;
} else {
// Registration future is almost always fulfilled already, but just in case it's not.
final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel);
regFuture.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
Throwable cause = future.cause();
if (cause != null) {
// Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an
// IllegalStateException once we try to access the EventLoop of the Channel.
promise.setFailure(cause);
} else {
// Registration was successful, so set the correct executor to use.
// See https://github.com/netty/netty/issues/2586
promise.registered();
doBind0(regFuture, channel, localAddress, promise);
}
}
});
return promise;
}
}
AbstractBootstrap#initAndRegister()
方法的作用见名知意,其作用就是初始化 channel 并完成注册,其中关键的部分如下:
- 首先通过配置的Channel 工厂类创建指定 Channel 对象,然后通过 init(channel) 方法初始化 Channel
- config().group().register(channel) 将初始化完毕的 Channel 注册到 MainReactor 中某个事件循环线程 Selector 上
final ChannelFuture initAndRegister() {
Channel channel = null;
try {
channel = channelFactory.newChannel();
init(channel);
} catch (Throwable t) {
if (channel != null) {
// channel can be null if newChannel crashed (eg SocketException("too many open files"))
channel.unsafe().closeForcibly();
// as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
return new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE).setFailure(t);
}
// as the Channel is not registered yet we need to force the usage of the GlobalEventExecutor
return new DefaultChannelPromise(new FailedChannel(), GlobalEventExecutor.INSTANCE).setFailure(t);
}
ChannelFuture regFuture = config().group().register(channel);
if (regFuture.cause() != null) {
if (channel.isRegistered()) {
channel.close();
} else {
channel.unsafe().closeForcibly();
}
}
return regFuture;
}
channelFactory.newChannel()
通过反射调用了 NioServerSocketChannel
无参构造方法,可知其 newSocket()
方法实际是返回了一个 JDK 中的 ServerSocketChannel
对象, NioServerSocketChannel
实际就是这个对象的进一步封装。在 NioServerSocketChannel
的有参构造中可以看到,其调用了父类构造方法,并指定了其监听的就绪事件为 SelectionKey.OP_ACCEPT
。此处往上追溯到其 AbstractNioChannel
父类构造方法,可以看到 JDK 中 NIO 设置非阻塞的标准操作,并保留了监听的就绪事件的标识 readInterestOp
,这个标识会在之后开始读取 IO 数据的时候用于设置监听事件
public NioServerSocketChannel() {
this(newSocket(DEFAULT_SELECTOR_PROVIDER));
}
public NioServerSocketChannel(ServerSocketChannel channel) {
super(null, channel, SelectionKey.OP_ACCEPT);
config = new NioServerSocketChannelConfig(this, javaChannel().socket());
}
// AbstractNioChannel 构造方法
protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
super(parent);
this.ch = ch;
this.readInterestOp = readInterestOp;
try {
ch.configureBlocking(false);
} catch (IOException e) {
try {
ch.close();
} catch (IOException e2) {
if (logger.isWarnEnabled()) {
logger.warn(
"Failed to close a partially initialized socket.", e2);
}
}
throw new ChannelException("Failed to enter non-blocking mode.", e);
}
}
追溯 NioServerSocketChannel
父类构造方法最终来到 AbstractChannel
,可以到其主要有两个动作:
- newUnsafe() 新建 NioMessageUnsafe 对象,该类负责实际的 IO 读写动作
- newChannelPipeline() 新建 DefaultChannelPipeline 对象
protected AbstractChannel(Channel parent) {
this.parent = parent;
id = newId();
unsafe = newUnsafe();
pipeline = newChannelPipeline();
}
DefaultChannelPipeline
构造方法中会新建 TailContext
和 HeadContext
对象,并将其前后指针互相指向对象,形成双向处理链表
protected DefaultChannelPipeline(Channel channel) {
this.channel = ObjectUtil.checkNotNull(channel, "channel");
succeededFuture = new SucceededChannelFuture(channel, null);
voidPromise = new VoidChannelPromise(channel, true);
tail = new TailContext(this);
head = new HeadContext(this);
head.next = tail;
tail.prev = head;
}
Channel 对象的创建告一段落,回到初始化 Channel 的方法AbstractBootstrap#init()
。这是个抽象方法,其实现为 ServerBootstrap#init()
。这个方法中最重要的逻辑就是代码 p.addLast()
调用的部分,这部分ChannelInitializer
对象被添加到流处理链,会在之后的流程中将 ServerBootstrapAcceptor
注册到 MainReactor 的处理链中
void init(Channel channel) throws Exception {
final Map<ChannelOption<?>, Object> options = options0();
synchronized (options) {
setChannelOptions(channel, options, logger);
}
final Map<AttributeKey<?>, Object> attrs = attrs0();
synchronized (attrs) {
for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
@SuppressWarnings("unchecked")
AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
channel.attr(key).set(e.getValue());
}
}
ChannelPipeline p = channel.pipeline();
final EventLoopGroup currentChildGroup = childGroup;
final ChannelHandler currentChildHandler = childHandler;
final Entry<ChannelOption<?>, Object>[] currentChildOptions;
final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
synchronized (childOptions) {
currentChildOptions = childOptions.entrySet().toArray(newOptionArray(0));
}
synchronized (childAttrs) {
currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(0));
}
p.addLast(new ChannelInitializer<Channel>() {
@Override
public void initChannel(final Channel ch) throws Exception {
final ChannelPipeline pipeline = ch.pipeline();
ChannelHandler handler = config.handler();
if (handler != null) {
pipeline.addLast(handler);
}
ch.eventLoop().execute(new Runnable() {
@Override
public void run() {
pipeline.addLast(new ServerBootstrapAcceptor(
ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
}
});
}
});
}
进入 DefaultChannelPipeline#addLast()
方法,可以看到其内部主要做了 3 件事:
- newContext() 将 ChannelHandler 封装到 DefaultChannelHandlerContext 对象
- addLast0() 将新建的 ChannelHandlerContext 对象加入到双向链表中
- 此时 Channel 还没有完成注册,callHandlerCallbackLater() 方法将新建一个 PendingHandlerAddedTask 对象,用于注册完成后执行 callHandlerAdded0() 方法回调处理器实现的 handlerAdd() 方法
public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) {
final AbstractChannelHandlerContext newCtx;
synchronized (this) {
checkMultiplicity(handler);
newCtx = newContext(group, filterName(name, handler), handler);
addLast0(newCtx);
// If the registered is false it means that the channel was not registered on an eventloop yet.
// In this case we add the context to the pipeline and add a task that will call
// ChannelHandler.handlerAdded(...) once the channel is registered.
if (!registered) {
newCtx.setAddPending();
callHandlerCallbackLater(newCtx, true);
return this;
}
EventExecutor executor = newCtx.executor();
if (!executor.inEventLoop()) {
newCtx.setAddPending();
executor.execute(new Runnable() {
@Override
public void run() {
callHandlerAdded0(newCtx);
}
});
return this;
}
}
callHandlerAdded0(newCtx);
return this;
}
Channel 的初始化结束,接下来就是注册 Channel。config().group().register(channel)
实际调用到了 NioEventLoopGroup
超类 MultithreadEventLoopGroup#register()
方法,最终其实是选中事件循环线程池中的一个 NioEventLoop
事件循环对象完成注册,实现是调用其超类 SingleThreadEventLoop#register()
方法
@Override
public ChannelFuture register(final ChannelPromise promise) {
ObjectUtil.checkNotNull(promise, "promise");
promise.channel().unsafe().register(this, promise);
return promise;
}
从代码可以看到,注册是由 Unsafe
类完成的,其实现为 AbstractUnsafe#register()
。此时事件循环线程还没有启动,故其会将 AbstractUnsafe#register0()
方法包装成异步任务扔到事件循环对象中执行
@Override
public final void register(EventLoop eventLoop, final ChannelPromise promise) {
......
AbstractChannel.this.eventLoop = eventLoop;
if (eventLoop.inEventLoop()) {
register0(promise);
} else {
try {
eventLoop.execute(new Runnable() {
@Override
public void run() {
register0(promise);
}
});
} catch (Throwable t) {
logger.warn(
"Force-closing a channel whose registration task was not accepted by an event loop: {}",
AbstractChannel.this, t);
closeForcibly();
closeFuture.setClosed();
safeSetFailure(promise, t);
}
}
}
以上任务其实提交到了 SingleThreadEventExecutor#execute()
,这个方法比较关键的其实只有两步:
- addTask() 将异步任务添加到任务队列中
- 此时事件循环尚未启动,调用 startThread() 新建线程并启动
@Override
public void execute(Runnable task) {
if (task == null) {
throw new NullPointerException("task");
}
boolean inEventLoop = inEventLoop();
addTask(task);
if (!inEventLoop) {
startThread();
if (isShutdown() && removeTask(task)) {
reject();
}
}
if (!addTaskWakesUp && wakesUpForTask(task)) {
wakeup(inEventLoop);
}
}
启动线程调用到 SingleThreadEventExecutor#doStartThread()
,此处代码 executor.execute()
实际是通过 ThreadPerTaskExecutor
新建并启动线程,至此则 SingleThreadEventExecutor.this.run()
方法被调用
private void doStartThread() {
assert thread == null;
executor.execute(new Runnable() {
@Override
public void run() {
thread = Thread.currentThread();
if (interrupted) {
thread.interrupt();
}
boolean success = false;
updateLastExecutionTime();
try {
SingleThreadEventExecutor.this.run();
success = true;
} catch (Throwable t) {
logger.warn("Unexpected exception from an event executor: ", t);
} finally {
......
}
}
});
}
SingleThreadEventExecutor.this.run()
为抽象方法,其实现为NioEventLoop#run()
,其主要逻辑如下:
for 空循环正式启动事件循环线程。循环中select() 方法通过 Selector 轮询 IO 就绪事件,之后根据 ioRatio 配置分配processSelectedKeys()处理 IO 事件 和 runAllTasks() 处理其他任务的时间
protected void run() {
for (;;) {
try {
switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
case SelectStrategy.CONTINUE:
continue;
case SelectStrategy.BUSY_WAIT:
// fall-through to SELECT since the busy-wait is not supported with NIO
case SelectStrategy.SELECT:
select(wakenUp.getAndSet(false));
if (wakenUp.get()) {
selector.wakeup();
}
// fall through
default:
}
cancelledKeys = 0;
needsToSelectAgain = false;
final int ioRatio = this.ioRatio;
if (ioRatio == 100) {
try {
processSelectedKeys();
} finally {
// Ensure we always run tasks.
runAllTasks();
}
} else {
final long ioStartTime = System.nanoTime();
try {
processSelectedKeys();
} finally {
// Ensure we always run tasks.
final long ioTime = System.nanoTime() - ioStartTime;
runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
}
}
} catch (Throwable t) {
handleLoopException(t);
}
// Always handle shutdown even if the loop processing threw an exception.
try {
if (isShuttingDown()) {
closeAll();
if (confirmShutdown()) {
return;
}
}
} catch (Throwable t) {
handleLoopException(t);
}
}
}
SingleThreadEventExecutor#runAllTasks()
会将队列中的任务处理掉,则之前的异步任务 AbstractUnsafe#register0()
被执行,其处理步骤如下:
- doRegister() 完成 ServerSocketChannel 的注册
- pipeline.invokeHandlerAddedIfNeeded() 回调 Handler 处理器的 handlerAdded() 方法
- pipeline.fireChannelRegistered() 通知 Channel 注册事件,由处理器做相应处理
- 此时 ServerSocketChannel 如果是激活状态,且是第一次注册,则 pipeline.fireChannelActive() 通知 Channel 激活事件,由处理器做对应处理
private void register0(ChannelPromise promise) {
try {
// check if the channel is still open as it could be closed in the mean time when the register
// call was outside of the eventLoop
if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
}
boolean firstRegistration = neverRegistered;
doRegister();
neverRegistered = false;
registered = true;
// Ensure we call handlerAdded(...) before we actually notify the promise. This is needed as the
// user may already fire events through the pipeline in the ChannelFutureListener.
pipeline.invokeHandlerAddedIfNeeded();
safeSetSuccess(promise);
pipeline.fireChannelRegistered();
// Only fire a channelActive if the channel has never been registered. This prevents firing
// multiple channel actives if the channel is deregistered and re-registered.
if (isActive()) {
if (firstRegistration) {
pipeline.fireChannelActive();
} else if (config().isAutoRead()) {
// This channel was registered before and autoRead() is set. This means we need to begin read
// again so that we process inbound data.
//
// See https://github.com/netty/netty/issues/4805
beginRead();
}
}
} catch (Throwable t) {
// Close the channel directly to avoid FD leak.
closeForcibly();
closeFuture.setClosed();
safeSetFailure(promise, t);
}
}
AbstractNioChannel#doRegister()
中实际调用了 ServerSocketChannel#register()
实现将 Channel 注册到 Selector 上,这属于Java 中 NIO 的标准操作。需注意此时 Channel 的监听标识为 0,也就是说此时 ServerSocketChannel 仅仅注册成功了,还不能监听任何网络操作。不过之后可以通过 SelectionKey#interestOps()
方法修改监听操作位为指定值,也就是步骤 3 提到的标识
protected void doRegister() throws Exception {
boolean selected = false;
for (;;) {
try {
selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);
return;
} catch (CancelledKeyException e) {
if (!selected) {
// Force the Selector to select now as the "canceled" SelectionKey may still be
// cached and not removed because no Select.select(..) operation was called yet.
eventLoop().selectNow();
selected = true;
} else {
// We forced a select operation on the selector before but the SelectionKey is still cached
// for whatever reason. JDK bug ?
throw e;
}
}
}
}
pipeline.invokeHandlerAddedIfNeeded()
最终调用到 DefaultChannelPipeline#callHandlerAddedForAllHandlers()
,则步骤 7 中封装的 PendingHandlerAddedTask#execute
执行,可以看到这个任务的核心为 DefaultChannelPipeline#callHandlerAdded0()
@Override
void execute() {
EventExecutor executor = ctx.executor();
if (executor.inEventLoop()) {
callHandlerAdded0(ctx);
} else {
try {
executor.execute(this);
} catch (RejectedExecutionException e) {
if (logger.isWarnEnabled()) {
logger.warn(
"Can't invoke handlerAdded() as the EventExecutor {} rejected it, removing handler {}.",
executor, ctx.name(), e);
}
remove0(ctx);
ctx.setRemoved();
}
}
}
DefaultChannelPipeline#callHandlerAdded0()
会依次回调处理器的 handlerAdded()
方法,则步骤6 的 ChannelInitializer#handlerAdded()
会被调用,最终调用 ChannelInitializer#initChannel()
将ServerBootstrapAcceptor
注册到 MainReactor 的处理链中,至此再执行完 步骤13 剩下的步骤则注册流程完成
p.addLast(new ChannelInitializer<Channel>() {
@Override
public void initChannel(final Channel ch) throws Exception {
final ChannelPipeline pipeline = ch.pipeline();
ChannelHandler handler = config.handler();
if (handler != null) {
pipeline.addLast(handler);
}
ch.eventLoop().execute(new Runnable() {
@Override
public void run() {
pipeline.addLast(new ServerBootstrapAcceptor(
ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs));
}
});
}
});
Channel 初始化并注册完成后,就进入了绑定流程,也就是方法 AbstractBootstrap#doBind0()
的调用。可以看到方法内部的主体是向已经注册的 Channel 所属的事件循环线程提交一个异步任务,该任务主要调用到 AbstractChannel#bind()
方法
private static void doBind0(
final ChannelFuture regFuture, final Channel channel,
final SocketAddress localAddress, final ChannelPromise promise) {
// This method is invoked before channelRegistered() is triggered. Give user handlers a chance to set up
// the pipeline in its channelRegistered() implementation.
channel.eventLoop().execute(new Runnable() {
@Override
public void run() {
if (regFuture.isSuccess()) {
channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
} else {
promise.setFailure(regFuture.cause());
}
}
});
}
AbstractChannel#bind()
方法内部调用到 DefaultChannelPipeline#bind()
方法,这个方法逻辑很简单,只是使用 TailContext
的引用调到了 AbstractChannelHandlerContext#bind()
方法
public final ChannelFuture bind(SocketAddress localAddress) {
return tail.bind(localAddress);
}
AbstractChannelHandlerContext#bind()
内部逻辑也不复杂,首先通过 findContextOutbound()
方法从流处理双向链表尾部往前找到一个处理出站事件的处理器,也就是 HeadContext
,之后调用其 invokeBind()
方法
public ChannelFuture bind(final SocketAddress localAddress, final ChannelPromise promise) {
if (localAddress == null) {
throw new NullPointerException("localAddress");
}
if (isNotValidPromise(promise, false)) {
// cancelled
return promise;
}
final AbstractChannelHandlerContext next = findContextOutbound();
EventExecutor executor = next.executor();
if (executor.inEventLoop()) {
next.invokeBind(localAddress, promise);
} else {
safeExecute(executor, new Runnable() {
@Override
public void run() {
next.invokeBind(localAddress, promise);
}
}, promise, null);
}
return promise;
}
HeadContext#invokeBind()
方法其实是借助了 Unsafe
类进行绑定操作的,最终也就调到了 AbstractUnsafe#bind()
方法。这个方法主要完成了两件事:
- doBind() 完成 ServerSocketChannel 绑定到指定端口
- 提交异步任务,调用 pipeline.fireChannelActive() 通知 Channel 已经激活,从而回调处理器中的 channelActive() 方法。需注意,在这个过程中服务端 Channel 监听的事件将被更改为
SelectionKey.OP_ACCEPT
,这部分将在后续解析新连接建立的文章中分析
public final void bind(final SocketAddress localAddress, final ChannelPromise promise) {
assertEventLoop();
if (!promise.setUncancellable() || !ensureOpen(promise)) {
return;
}
// See: https://github.com/netty/netty/issues/576
if (Boolean.TRUE.equals(config().getOption(ChannelOption.SO_BROADCAST)) &&
localAddress instanceof InetSocketAddress &&
!((InetSocketAddress) localAddress).getAddress().isAnyLocalAddress() &&
!PlatformDependent.isWindows() && !PlatformDependent.maybeSuperUser()) {
// Warn a user about the fact that a non-root user can't receive a
// broadcast packet on *nix if the socket is bound on non-wildcard address.
logger.warn(
"A non-root user can't receive a broadcast packet if the socket " +
"is not bound to a wildcard address; binding to a non-wildcard " +
"address (" + localAddress + ") anyway as requested.");
}
boolean wasActive = isActive();
try {
doBind(localAddress);
} catch (Throwable t) {
safeSetFailure(promise, t);
closeIfClosed();
return;
}
if (!wasActive && isActive()) {
invokeLater(new Runnable() {
@Override
public void run() {
pipeline.fireChannelActive();
}
});
}
safeSetSuccess(promise);
}
dobind()
为抽象方法,其实现为 NioServerSocketChannel#doBind()
,可以看到内部逻辑其实就是将 ServerSocketChannel 绑定到指定端口进行监听而已,属于 Java 中 NIO 的标准操作,至此绑定流程结束
protected void doBind(SocketAddress localAddress) throws Exception {
if (PlatformDependent.javaVersion() >= 7) {
javaChannel().bind(localAddress, config.getBacklog());
} else {
javaChannel().socket().bind(localAddress, config.getBacklog());
}
}