大学物理上——复习系统c++代码

此为本人在大二上学期准备物理期末考试时于闲暇时间所写代码,可在dev编译器中进行编译使用,聊以慰藉。现附源码如下:

#include 
#include 
using namespace std;
int main()
{
	cout<<"----------------------\n"<<endl;
	cout<<"    大学物理复习系统    \n"<<endl;
	cout<<"    制作人:方寸谛\n"<<endl;
	cout<<"------------------------"<<endl;
	A:
	system("pause");
	system("cls");
	cout<<"请选择模块"<<endl;
	cout<<"------------------------"<<endl;
	cout<<"    1、电场基础"<<endl;
	cout<<"    2、电场场强"<<endl;
	cout<<"    3、电场电势"<<endl;
	cout<<"    4、电场电容"<<endl;
	cout<<"    5、磁场场强"<<endl;
	cout<<"    6、磁场力"<<endl;
	cout<<"    7、磁化"<<endl;
	cout<<"    0、结束"<<endl;
	cout<<"------------------------"<<endl;
	int a;
	cin>>a;
	system("cls"); 
	switch(a) {
		case 0:{
			return 0;
		}
		case 1:{
			cout<<"库仑定律:F=k(q1*q2)/r^2,k=1/4πE0=9.0x10^9"<<"\n"<<endl;
			Sleep(250);
			cout<<"电偶极矩:p=q*l"<<"\n"<<endl;
			Sleep(250);
			cout<<"电力矩:M=pxE,电偶极矩与电场强度的叉乘"<<"\n"<<endl;
			Sleep(250);
//			cout<<"公式:"<
//			cout<<"  A∪B=A∩!B∪B"<
//			cout<<"  P(A-B)=P(A∩!B)=P(A)-P(AB),B∈A时,P(A-B)=P(A)-P(B)"<
//			cout<<"  P(A∪B)=P(A)+P(B)-P(AB),可推广"<
//			Sleep(250);
			break;
		}
		case 2:{
			cout<<"场强:E=F/q,不能E=|dE,要Ex=|dEx,再叠加"<<"\n"<<endl;
			cout<<"  静止点电荷:E=k*q/r^2"<<"\n"<<endl;
			cout<<"  点电荷系电场:对E求矢量和"<<"\n"<<endl;
			cout<<"  连续带电体:ρ=dq/dv体密度,E=|k*ρdv/r^2,可推导到面、线"<<"\n"<<endl;
			cout<<"  无限长电线:E=ρ/2πE0d,ρ为线密度,d为距离"<<"\n"<<endl;
			cout<<"  无限大平面:E=ρ/2E0,ρ为面密度,是均匀电场"<<"\n"<<endl;
			cout<<"  圆盘:E=k*q/x^2,q为带电量,x为距离"<<"\n"<<endl;
			cout<<"  球面:k*q/r^2,r为到球心的距离,球面内为0"<<"\n"<<endl;
			cout<<"  柱面:ρ/2πE0r,ρ为面密度,r为到面的垂直距离"<<"\n"<<endl;
			Sleep(250);
			cout<<"高斯定理:闭合曲面上对的场强的面积分等于曲面包围的电荷量与E0的比值"<<"\n"<<endl;
			Sleep(250);
			cout<<"极化强度:P=p/v=E0*Xe*E,电偶极矩的矢量和与单位体积的比值,Xe为电极化率"<<"\n"<<endl;
			Sleep(250);
			cout<<"电位移矢量:D=E0*Er*E=E*E,Er为相对介电常数=1+Xe,E为绝对介电常数**"<<"\n"<<endl;
			Sleep(250);
			cout<<"极化电荷面密度:ρ=dq/ds=P·n,极化强度的面方向的分量"<<"\n"<<endl;
			Sleep(250);
			cout<<"极化电荷量:\n  -q'=|Pds,极化电荷量=极化强度的面积分"<<"\n"<<endl;
			cout<<"  q0=|Dds=|(E0*E+P)ds,自由电荷量=电位移矢量的面积分"<<"\n"<<endl;
			cout<<"  E0|Eds=q0+q',总电荷量=电场强度的面积分*常数"<<"\n"<<endl;
			Sleep(250);
			cout<<"静电场的能量密度:dW=du/dv=E0*Er*E^2/2,W=CU^2/2=QU/2=|||dWdv,对dW的体积分"<<"\n"<<endl;
			break;
		}
		case 3:{
			cout<<"电势:Ua-Ub=Wab/q0=|Edl,a为起点,b为终点"<<"\n"<<endl;
			cout<<"  静止点电荷:q/4πE0r"<<"\n"<<endl;
			cout<<"  点电荷系电场:对U求代数和"<<"\n"<<endl;
			cout<<"  有限长电线:q/(8πE0l)ln((x+l+√((x+l)^2+y^2))/(x-l+√((x-l)^2+y^2)))"<<"\n"<<endl;
			cout<<"  无限长电线:ρ/(2πE0)ln(a/r)"<<"\n"<<endl;
			cout<<"  球面:k*q/r,r为到球心的距离,球面内部为定值k*q/R"<<"\n"<<endl;
			Sleep(250);			
			break;
		}
		case 4:{
			cout<<"电容:C=q/U"<<"\n"<<endl;
			Sleep(250); 
			cout<<"  平行板电容器:C=E0*S/d,d为板间间距"<<"\n"<<endl;
			cout<<"  孤立导体球:C=4πE0*R"<<"\n"<<endl;
			cout<<"  同心球壳:C=(4πE*R1*R2)/(R2-R1)"<<"\n"<<endl;
			cout<<"  同心圆柱:C=2πE*l/(ln(R2/R1))"<<"\n"<<endl;
			Sleep(250);
			cout<<"串联时为倒数的和,耐压值升高;并联时为和,耐压值为最小值"<<"\n"<<endl;
			Sleep(250);
			break;
		}
		case 5:{
			cout<<"磁场强度:dB=μ0*I*dlxr/4πr^3,μ0=4πx10^-7磁导率,dl为对导线的微分,r为距离"<<"\n"<<endl;
			cout<<"  B=|dB,对dB的线积分,μ0/4π|I*dlxr/r^3"<<"\n"<<endl;
			Sleep(250);
			cout<<"  有限长电线:B=|dB=μ0*I(cosθ1-cosθ2)/4πa,a为距离,在线上为0"<<"\n"<<endl;
			cout<<"  无限长导线:B=μ0*I/2πa,θ1=0,θ2=π"<<"\n"<<endl;
			cout<<"  线圈:B=|dB//=μ0*R^2*I/2(R^2+r^2)^(3/2),中心为μ0*I/2R,无限远为μ0*I*S/2πr^3"<<"\n"<<endl;
			cout<<"  螺线管:B=μ0*n*I(cosθ2-cosθ1)/2,两端为μ0*n*I/2,无限长为μ2*n*I"<<"\n"<<endl;
			Sleep(250);			
			cout<<"磁通量:dφ=Bcosθds=Bds,φ=|Bds,单位面积上磁感线线的条数"<<"\n"<<endl;
			Sleep(250);			
			cout<<"高斯定理:磁场内的闭合曲面磁通量为0"<<"\n"<<endl;
			Sleep(250);			
			cout<<"安倍环路定理:|Bdl=μ0*Ia,闭合曲线上的磁场强度的积分等于曲面穿过的电流的代数和乘μ0,进恒定电流,对称性"<<"\n"<<endl;
			Sleep(250);
			break;
		}
		case 6:{			
			cout<<"安倍力:dF=IdlxB,F=|IxBdl,安倍力等于电流与磁场强度的叉乘的线积分"<<"\n"<<endl;
			Sleep(250);						
			cout<<"磁矩:Pm=I·S,磁力矩:M=PmxB"<<"\n"<<endl;
			Sleep(250);			
			cout<<"功:A=|I(φ2-φ1)"<<"\n"<<endl;
			Sleep(250);			
			cout<<"洛仑磁力:f=q*vxB,右手法则"<<"\n"<<endl;
			Sleep(250);			
			cout<<"霍尔效应:U=Rh*I*B/d=I*B/(n*q*d),d为沿B方向的厚度"<<"\n"<<endl;
			Sleep(250);
			break;
		}
		case 7:{			
			cout<<"相对磁导率:μr,绝对磁导率μ=μ0*μr"<<"\n"<<endl;
			cout<<"  B=B0+B'=μr*B,顺磁质μ略大于μ0,Pm!=0;抗磁质μ略小于μ0,Pm=0,铁磁质μ远大于μ0"<<"\n"<<endl;
			Sleep(250);			
			cout<<"磁化强度矢量:M=lim(Pm/dv)=(Pm+Pm')/dv=jmxn0,面电流密度矢量与方向矢量的叉乘0"<<"\n"<<endl;
			cout<<"  Im=|Mdl,闭合环路的环流=穿过面的磁化电流的代数和,仅存在于介质表面"<<"\n"<<endl; 
			Sleep(250);			
			cout<<"磁场强度矢量:H=B/μ0-M,与B同向,|Hdl=I0,即对H求环路积分为穿过面的传导电流代数和\nB=B0+B',最后的场强=原场强+附加场强"<<"\n"<<endl;
			cout<<"  |Bdl=|(B0+B')dl=μ0(I0+Im),I0为传导电流代数和,Im为磁化电流代数和"<<"\n"<<endl;
			cout<<"  M=Xm*H,Xm为磁化率,μr=1+Xm"<<"\n"<<endl;
			cout<<"  B=μ0(1+Xm)H=μ0μrH=μH"<<"\n"<<endl; 
			Sleep(250);			
			cout<<"铁磁质:Hc矫顽力,Br剩磁"<<"\n"<<endl;
			cout<<"  软磁材料:Hc小,Br小,S小,用于电机,变压器"<<"\n"<<endl;
			cout<<"  硬磁材料:Hc大,Br大,S大,用于永磁体"<<"\n"<<endl;
			cout<<"  矩磁材料:像举行,Br≈Bs,磁极可迅速翻转"<<"\n"<<endl;
			Sleep(250);			
			cout<<"居里点Tc:距离点以上,铁磁质成为顺磁质,降温后恢复"<<"\n"<<endl;
			Sleep(250);
			break;
		}
		default:{
			cout<<"输入错误"<<endl; 
		} 
	} 
	goto A;
	return 0;
 } 

你可能感兴趣的:(各科复习系统,c++)