VGG网络是在Very Deep Convolutional Network For Large-Scale Image Recognition这篇论文中提出,论文翻译详见这篇文章,本篇文章介绍VGG网络,并对VGG-D进行代码实现。
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
定义池化函数:
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
def conv_net(x, weights, biases, dropout):
# Reshape input picture x.shape:(128,128,3)
x = tf.reshape(x, shape=[-1, 128, 128, 3])
# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
# Max Pooling (down-sampling)
pool1 = maxpool2d(conv2, k=2)
print(pool1.shape) #(64,64,64)
# Convolution Layer
conv3 = conv2d(pool1, weights['wc3'], biases['bc3'])
conv4 = conv2d(conv3, weights['wc4'], biases['bc4'])
# Max Pooling (down-sampling)
pool2 = maxpool2d(conv4, k=2)
print(pool2.shape) #(32,32,128)
# Convolution Layer
conv5 = conv2d(pool2, weights['wc5'], biases['bc5'])
conv6 = conv2d(conv5, weights['wc6'], biases['bc6'])
conv7 = conv2d(conv6, weights['wc7'], biases['bc7'])
# Max Pooling
pool3 = maxpool2d(conv7, k=2)
print(pool3.shape) #(16,16,256)
# Convolution Layer
conv8 = conv2d(pool3, weights['wc8'], biases['bc8'])
conv9 = conv2d(conv8, weights['wc9'], biases['bc9'])
conv10 = conv2d(conv9, weights['wc10'], biases['bc10'])
# Max Pooling
pool4 = maxpool2d(conv10, k=2)
print(pool4.shape) #(8,8,512)
conv11 = conv2d(pool4, weights['wc11'], biases['bc11'])
conv12 = conv2d(conv11, weights['wc12'], biases['bc12'])
conv13 = conv2d(conv12, weights['wc13'], biases['bc13'])
# Max Pooling
pool5 = maxpool2d(conv13, k=2)
print(pool5.shape) #(4,4,512)
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(pool5, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)
#fc2 = tf.reshape(fc1, [-1, weights['wd2'].get_shape().as_list()[0]])
fc2 = tf.add(tf.matmul(fc1, weights['wd2']), biases['bd2'])
fc2 = tf.nn.relu(fc2)
# Apply Dropout
fc2 = tf.nn.dropout(fc2, dropout)
'''
fc3 = tf.reshape(fc2, [-1, weights['out'].get_shape().as_list()[0]])
fc3 = tf.add(tf.matmul(fc2, weights['out']), biases['bd2'])
fc3 = tf.nn.relu(fc2)
'''
# Output, class prediction
out = tf.add(tf.matmul(fc2, weights['out']), biases['out'])
return out
定义权重:
weights = {
# 3x3 conv, 3 input, 24 outputs
'wc1': tf.Variable(tf.random_normal([3, 3, 3, 64])),
'wc2': tf.Variable(tf.random_normal([3, 3, 64, 64])),
'wc3': tf.Variable(tf.random_normal([3, 3, 64, 128])),
'wc4': tf.Variable(tf.random_normal([3, 3, 128, 128])),
'wc5': tf.Variable(tf.random_normal([3, 3, 128, 256])),
'wc6': tf.Variable(tf.random_normal([3, 3, 256, 256])),
'wc7': tf.Variable(tf.random_normal([3, 3, 256, 256])),
'wc8': tf.Variable(tf.random_normal([3, 3, 256, 512])),
'wc9': tf.Variable(tf.random_normal([3, 3, 512, 512])),
'wc10': tf.Variable(tf.random_normal([3, 3, 512, 512])),
'wc11': tf.Variable(tf.random_normal([3, 3, 512, 512])),
'wc12': tf.Variable(tf.random_normal([3, 3, 512, 512])),
'wc13': tf.Variable(tf.random_normal([3, 3, 512, 512])),
# fully connected, 32*32*96 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([4*4*512, 1024])),
'wd2': tf.Variable(tf.random_normal([1024, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, 10]))
定义偏置:
biases = {
'bc1': tf.Variable(tf.random_normal([64])),
'bc2': tf.Variable(tf.random_normal([64])),
'bc3': tf.Variable(tf.random_normal([128])),
'bc4': tf.Variable(tf.random_normal([128])),
'bc5': tf.Variable(tf.random_normal([256])),
'bc6': tf.Variable(tf.random_normal([256])),
'bc7': tf.Variable(tf.random_normal([256])),
'bc8': tf.Variable(tf.random_normal([512])),
'bc9': tf.Variable(tf.random_normal([512])),
'bc10': tf.Variable(tf.random_normal([512])),
'bc11': tf.Variable(tf.random_normal([512])),
'bc12': tf.Variable(tf.random_normal([512])),
'bc13': tf.Variable(tf.random_normal([512])),
'bd1': tf.Variable(tf.random_normal([1024])),
'bd2': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([10]))
其他参数:
# Construct model
pred = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
saver=tf.train.Saver()
这样,VGG网络的答题结构就都已经定义好了,只要初始化变量,设置Session,定义输入图像就可以跑程序了。