深入浅出python机器学习_8.3_神经网络实例_手写识别_MNIST数据集的使用

#  导入数据集获取工具
# from sklearn.datasets import fetch_mldata

#  加载MNIST手写数字数据集
# mnist=fetch_mldata('MNIST original')

# 报错,无法获取,参考: https://blog.csdn.net/Dontla/article/details/99677247
# 获取scikit数据根目录

from sklearn.datasets import get_data_home

print(get_data_home())
C:\Users\HuaWei\scikit_learn_data
from sklearn.datasets import fetch_mldata

mnist=fetch_mldata('MNIST original')

mnist
c:\users\huawei\appdata\local\programs\python\python36\lib\site-packages\sklearn\utils\deprecation.py:85: DeprecationWarning: Function fetch_mldata is deprecated; fetch_mldata was deprecated in version 0.20 and will be removed in version 0.22. Please use fetch_openml.
  warnings.warn(msg, category=DeprecationWarning)
c:\users\huawei\appdata\local\programs\python\python36\lib\site-packages\sklearn\utils\deprecation.py:85: DeprecationWarning: Function mldata_filename is deprecated; mldata_filename was deprecated in version 0.20 and will be removed in version 0.22. Please use fetch_openml.
  warnings.warn(msg, category=DeprecationWarning)





{'DESCR': 'mldata.org dataset: mnist-original',
 'COL_NAMES': ['label', 'data'],
 'target': array([0., 0., 0., ..., 9., 9., 9.]),
 'data': array([[0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        ...,
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0],
        [0, 0, 0, ..., 0, 0, 0]], dtype=uint8)}
import numpy as np

import matplotlib.pyplot as plt

print('type(mnist):',type(mnist),'\n')

print('样本数量:{}\n样本特征数:{}'.format(mnist.data.shape[0],mnist.data.shape[1]),'\n')

print('mnist.data[0].shape:',mnist.data[0].shape)
type(mnist):  

样本数量:70000
样本特征数:784 

mnist.data[0].shape: (784,)
# 打印数字来看看

x=np.arange(-14,14,1)

xx,yy=np.meshgrid(x,x)

# 千位决定数字几
z=mnist.data[62957].reshape(xx.shape)

plt.figure()

# 先将z转置,再逆时针旋转90度
plt.pcolormesh(xx,yy,np.rot90(z.T,1))

深入浅出python机器学习_8.3_神经网络实例_手写识别_MNIST数据集的使用_第1张图片

# 建立训练数据集和测试数据集

from sklearn.model_selection import train_test_split

X=mnist.data/255

print('打印mnist.data:\n',mnist.data,'\n')

print('mnist.data的维度:\n',(mnist.data).shape)

y=mnist.target

X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=5000,test_size=1000,random_state=62)
打印mnist.data:
 [[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]] 

mnist.data的维度:
 (70000, 784)
# 训练MLP神经网络
# 设置神经网络有两个100节点的隐藏层

from sklearn.neural_network import MLPClassifier

mlp_hw=MLPClassifier(solver='lbfgs',hidden_layer_sizes=[100,100],activation='relu',alpha=1e-5,random_state=62)

# 使用数据集寻来你神经网络模型

mlp_hw.fit(X_train,y_train)

print('测试数据得分:{:.2f}%'.format(mlp_hw.score(X_test,y_test)*100))
测试数据得分:93.60%
# 先安装PIL包, pip install pillow

from PIL import Image

image=Image.open('3.jpg').convert('F')

# 调整图像的大小

image=image.resize((28,28))

arr=[]

# 将图像中的像素作为预测数据点的特征

for i in range(28):
    for j in range(28):
        pixel=1.0-float(image.getpixel((j,i)))/255
        arr.append(pixel)
        
# 由于只有一个样本,所以需要进行reshape操作

arr1=np.array(arr).reshape(1,-1) # reshape成一行, 无论多少列

# 进行图像识别

print("图片中的数字是:{:.0f}".format(mlp_hw.predict(arr1)[0]))
图片中的数字是:3
# 将图片获取像素再把它画出来看看

image=Image.open('汉.jpg').convert('F')

# 调整图像的大小

image=image.resize((28,28))

x=np.arange(-14,14,1)

xx,yy=np.meshgrid(x,x)

arr=[]

for i in range(28):
    for j in range(28):
        pixel=image.getpixel((j,27-i))
        arr.append(pixel)

arr_=np.array(arr)

print(arr_)

z=arr_.reshape(xx.shape)

plt.figure()

# 顺时针旋转90度
plt.pcolormesh(xx,yy,z)
[207.7539978  210.98199463 213.03599548 216.92599487 220.76699829
 222.66299438 225.64599609 229.31900024 228.94900513 232.70399475
 234.68699646 236.1210022  236.40899658 237.81100464 237.76199341
 234.76199341 234.66499329 232.8500061  228.8500061  229.06300354
 225.07400513 228.1190033  221.34300232 220.022995   213.92599487
 215.11099243 214.96499634 209.0039978  209.7539978  210.98199463
 212.96499634 215.86099243 219.76699829 220.66299438 226.1190033
 226.09100342 231.70399475 231.70399475 210.75300598 236.60499573
 238.1210022  238.1210022  238.32699585 235.03900146 235.13800049
 232.8500061  230.8500061  229.06300354 226.74299622 224.16200256
 222.34300232 220.022995   216.86599731 158.18499756 210.73699951
 210.0039978  210.76800537 210.91099548 212.11099243 193.69599915
 220.65299988 221.66299438 224.1190033  228.102005   229.70399475
 232.70399475 234.8500061  224.16000366 236.8500061  236.1210022
 235.32699585 230.32699585 218.23699951 237.70399475 228.852005
 227.09100342 221.13000488 204.69599915 206.8769989  170.13499451
 216.63800049 153.21600342 208.79299927 207.14599609 165.83599854
 208.39100647 163.04299927 161.19900513 219.79499817 222.95100403
 223.64599609 205.22900391 231.70399475 232.70399475 232.8500061
 234.96400452 205.9750061  215.76199341 236.32699585 234.09899902
 216.8500061  236.26899719 233.30200195 199.64599609 227.08000183
 232.897995   222.78399658 190.8769989  216.81199646 154.93800354
 199.39100647 210.06399536 209.91099548 151.875      212.93299866
 172.8500061  221.93299866 222.90800476 224.02200317 175.22900391
 228.75300598 230.98100281 233.8500061  236.04400635  51.85400009
 251.08200073 238.08200073 236.03900146 234.8500061  227.06300354
 227.76400757 225.74299622 225.94299316  70.76399994 226.36099243
 211.2749939  218.15400696 217.23199463 205.88299561 198.70799255
 205.09100342 202.28900146 212.96499634 164.07299805 219.91900635
 221.1190033  217.86399841 179.22900391 142.95300293 233.13800049
 236.8500061  233.66499329 230.03900146  46.77199936  37.08200073
 236.13800049 234.95300293 233.75300598 232.16000366 231.70399475
  43.70700073  47.07099915 230.27999878 219.88299561 218.15400696
 219.11300659 216.77600098 214.30900574 206.7539978  151.76800537
 215.01400757 163.66900635 216.65299988 214.76199341 226.34300232
 160.88600159  50.91799927  46.         232.8500061  241.96400452
 218.1210022  246.85400391  49.2879982  200.03900146 220.70399475
 231.13800049 208.852005    52.81100082  47.08200073 208.80299377
 218.73500061 220.05499268 218.15400696 212.92599487 211.03599548
 212.37399292 203.98199463 216.38699341 210.80099487 165.82299805
 220.34300232 220.66299438 225.64599609 198.95100403  47.
  47.         237.40899658 233.60499573 234.18099976 238.79400635
  56.08200073  47.16400146 208.94900513 213.72099304 142.98100281
  45.68999863  50.04399872 180.14399719 222.11599731 218.05499268
 219.92599487 214.11099243 214.01499939 208.94599915 207.99899292
 210.7539978  213.727005   186.71800232 220.65299988 223.27799988
 226.88499451 224.82000732  56.25        46.04899979  46.94200134
 238.70399475 215.94200134 235.08200073 237.8710022   47.31000137
 202.80299377  46.7120018  174.18099976 231.852005   226.07400513
 224.94099426 220.86599731 217.82200623 216.86599731 215.83399963
 208.01499939 211.24299622 210.7539978  212.69400024 162.14599609
 216.80099487 220.99499512 223.13000488 232.22900391 202.21200562
  61.22999954 225.95300293  46.31000137  46.31000137  49.31000137
  46.77199936  58.08200073  47.31000137 182.62199402 231.00900269
 231.96000671 228.80299377 225.08500671 222.2440033  220.91499329
 219.10499573 217.86599731 213.83399963 211.96499634 152.9960022
 210.05299377 212.91099548 198.17999268 216.8769989  219.99499512
 224.90800476 208.05000305 226.80299377 230.06300354 233.98100281
  46.85400009 234.82800293 217.03900146 243.03900146 234.08200073
 219.15299988  46.16799927  43.79399872  48.91799927  49.14599991
  47.1570015   46.7120018  224.74499512 220.01199341 219.15400696
 215.83399963 212.63800049 210.82499695 209.98199463 212.98199463
 159.03900146 215.23599243 219.76699829 223.65299988 223.88499451
 228.03100586 229.06300354 232.70399475 204.91000366 208.91000366
 240.13800049 233.32699585  52.32699966  51.85400009  47.08200073
 224.13800049 211.72099304 229.06300354 211.31599426 179.55599976
 211.8769989  202.96499634 216.86599731 216.83399963 209.76600647
 209.0039978  208.98199463 210.98199463 160.03599548 218.30000305
 220.76699829 224.9019928  230.1190033  189.21800232 243.72099304
 231.8500061  200.77000427 215.16499329 237.18099976 238.09899902
 224.05000305 236.91000366  47.          45.77199936  46.95100021
 220.16000366 231.08500671 164.74499512 187.8769989  219.17599487
 217.86599731 213.83399963 163.72900391 202.30900574 207.98199463
 205.06399536 143.1519928  219.07200623 216.76699829 221.66299438
 208.00100708 190.07200623 232.11300659 230.8500061  215.8500061
 230.98100281 235.18099976  83.08200073  49.32699966  47.08800125
  44.77199936 235.13800049 232.04100037 224.97099304 225.74299622
 222.66299438 225.94099426 226.19299316 217.15400696 213.83399963
 205.91499329 210.92199707 209.02799988 208.69400024 210.82499695
 215.09399414 219.76699829 220.66299438 224.44000244 225.82000732
 230.19799805 232.8500061  234.96400452 202.8500061  208.18099976
  47.08200073  68.         182.97099304  27.85400009  45.83200073
  45.89099884  69.11599731 225.82499695 222.9019928  224.21800232
 219.90800476 212.65299988 170.76800537 205.90800476 207.21200562
 206.83599854 169.66900635 215.92199707 216.91499329 220.65299988
 223.20100403  46.7120018   47.          47.1570015   33.72900009
 234.66499329 222.8500061  239.18099976  39.07099915  49.2879982
  78.82800293  41.7120018  230.86099243  29.93199921  46.86899948
  47.02199936 226.19500732 222.0059967  219.77799988 217.86599731
 216.11099243 211.69400024 169.70799255 204.7539978  203.0059967
 210.13499451 215.06399536 217.30000305 197.17100525  45.07099915
 230.91000366 223.62199402 232.98100281 234.81100464 232.8500061
 236.147995   103.32700348 238.32699585 234.87600708  42.85400009
  26.72900009  44.02199936  43.87099838 226.08000183 211.09399414
 223.09899902 220.022995   216.86599731 216.11099243 218.01499939
 201.97399902 211.7539978  211.96499634 144.01300049 192.89399719
 219.76699829 223.03300476 230.92399597 226.05499268 214.2440033
 237.06300354 229.75300598 234.8500061  237.40899658 238.32699585
 199.8710022   47.31000137  47.31000137  75.03900146 232.30200195
 230.06300354 227.10800171 199.78399658 217.29200745 214.79499817
 216.86599731 213.86599731 212.3769989  210.05299377 210.05299377
 208.13499451 218.66000366 214.80099487 219.99499512 224.91900635
 222.90800476 224.1190033  211.88000488 234.95300293 235.32699585
 239.03900146 233.16999817 238.08200073  93.          49.31000137
 222.03900146  47.08200073  64.76200104 227.30200195 228.10800171
 195.94099426 182.03700256 220.73500061 216.63800049 213.81199646
 206.82600403 190.66900635 207.7539978  193.0039978  154.28399658
 219.93200684 219.99499512 224.02200317 228.13000488 212.1190033
 229.94299316 248.32699585  47.31000137  47.31000137  46.08200073
  45.07099915  47.          49.31000137  45.72900009  43.08200073
  47.32699966 225.9980011  227.88000488 223.26100159 183.79299927
 219.022995   214.92599487 210.12199402 210.02099609 180.06399536
 208.7539978  211.71099854 166.87199402 211.17599487 219.99499512
 220.95100403 224.64599609 226.78100586  86.16400146  48.98300171
  47.31000137  40.03900146 239.40899658 233.08200073  47.
  50.         228.05000305  43.08200073  47.31000137  45.32699966
  51.66500092 226.44000244 185.25300598 217.11099243 214.15400696
 214.11099243 220.65499878 153.83999634 207.7539978  151.94599915
 214.10299683 215.19299316 219.77799988 192.13499451 219.9019928
 166.91499329 230.93200684 225.1210022  232.18099976 237.95300293
 236.40899658 240.40899658  47.         231.15299988 232.22000122
 206.1289978   47.31000137 127.13800049 226.93400574 223.20100403
 222.9019928  219.79499817 218.15400696 216.11099243 178.8500061
 149.95500183 201.22599792 209.98199463 214.25300598 217.07200623
 220.05499268 226.90800476 223.9019928  227.13000488 192.23899841
 233.70399475 232.93200684 216.8500061  234.1210022  236.8500061
 240.72900391 234.76199341 234.8500061  239.91000366  47.31000137
  49.95100021 224.03100586 205.25300598 216.15400696 218.11099243
 216.86599731 215.67700195 209.99200439 212.95199585 204.29400635
 212.02099609 214.12199402 215.36000061 220.01199341 223.13000488
 226.102005   189.55599976 233.88000488 232.70399475 235.86099243
 214.70399475 216.95300293 238.03900146 238.05000305 208.66499329
 234.9750061  235.96400452  43.85400009 248.17199707 223.04499817
 214.94099426 225.92399597 217.11099243 217.86599731 151.83900452
 140.05099487 210.71099854 208.11300659 157.40499878 156.02799988
 204.92599487 220.99499512 221.26100159 189.21800232 198.08900452
 226.96000671 232.70399475 201.80299377 216.16000366 234.60499573
 235.81100464 237.72900391 201.26899719 242.23699951 224.93400574
 226.80799866 229.06300354 218.08799744 222.30000305 212.27600098
 213.88299561 215.92599487 215.00100708 144.06700134 211.33099365
 208.08599854 157.91099548 212.04699707 226.03599548 219.99499512
 223.02200317 224.82000732 201.30000305 200.23699951 233.06300354
 235.13800049 212.75300598 238.16999817 235.81100464 236.08799744
 238.98100281 235.16000366 200.2440033  230.70399475 229.06300354
 225.05499268 174.95500183 222.34300232 201.67700195 216.63800049
 215.19299316 160.19900513 165.22399902 208.7539978  149.33700562
 213.11099243 168.67700195 219.76699829 222.82000732 226.89100647
 232.1190033  230.23699951 231.8500061  194.75300598 204.70399475
 234.89300537 238.03900146 238.1210022  234.60499573 234.86099243
 204.1190033  233.94299316 230.06300354 227.21200562 168.16799927
 214.95599365 217.01199341 216.63800049 215.83399963 170.66900635
 196.28399658 209.03100586 211.67199707 215.63800049 217.09399414
 219.15400696 219.98399353 224.1190033  226.96000671 228.72099304
 232.99200439 232.96400452 237.18099976 233.1210022  238.03900146
 238.03900146 237.09899902 235.1210022  229.93200684 231.06300354
 230.06300354 226.852005   229.84199524 226.34300232 187.98699951
 217.79499817 214.83399963 212.92199707 204.7539978 ]






深入浅出python机器学习_8.3_神经网络实例_手写识别_MNIST数据集的使用_第2张图片

# 检测reshape()函数机制

x=np.array([1,2,3,4,5,6,7,8,9])

y=np.array([[1,1,2],[1, 2, 1],[1, 1, 1]])

x=x.reshape(y.shape)

print(x)
[[1 2 3]
 [4 5 6]
 [7 8 9]]
# 将四色图片获取像素再把它画出来看看

image=Image.open('四色.jpg').convert('F')

# image=image.resize((16,16))

x=np.arange(-10,10,1)

xx,yy=np.meshgrid(x,x)

arr=[]

# PIL Image似乎是以图像左下角为原点的

for i in range(20):
    for j in range(20):
        pixel=image.getpixel((j,19-i))
        arr.append(pixel)

arr_=np.array(arr)

# print(arr_)

z=arr_.reshape(xx.shape)

print(z)

plt.figure()

# 顺时针旋转90度
plt.pcolormesh(xx,yy,z)
[[2.52750000e+02 2.53205994e+02 2.53516006e+02 2.52330994e+02
  2.54201996e+02 2.51919998e+02 2.54070999e+02 2.54412994e+02
  2.51951004e+02 2.53826004e+02 1.12500000e+00 8.97000015e-01
  3.84299994e+00 2.98999995e-01 2.98999995e-01 5.27000010e-01
  0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.53048996e+02 2.52917999e+02 2.52341995e+02 2.51000000e+02
  2.51921997e+02 2.51009995e+02 2.51807999e+02 2.52149994e+02
  2.52035995e+02 2.51694000e+02 6.81099987e+00 5.92500019e+00
  3.55500007e+00 3.55500007e+00 3.55500007e+00 5.02799988e+00
  8.85999978e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.54412994e+02 2.54412994e+02 2.53238998e+02 2.52947998e+02
  2.47134003e+02 2.44854004e+02 2.45651993e+02 2.45994003e+02
  2.45880005e+02 2.45423996e+02 9.76799965e+00 9.18099976e+00
  8.88199997e+00 1.06540003e+01 1.03549995e+01 7.09899998e+00
  2.36999989e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.54412994e+02 2.53826004e+02 2.53826004e+02 2.52834000e+02
  2.16563995e+02 2.17845001e+02 2.18656006e+02 2.17738007e+02
  2.15895004e+02 2.17895004e+02 2.19026001e+02 2.17009003e+02
  2.18718994e+02 2.18007004e+02 2.16867004e+02 2.19136002e+02
  2.95700002e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.53804001e+02 2.54701004e+02 2.53772003e+02 2.53860001e+02
  2.52606003e+02 2.49755997e+02 2.45651993e+02 2.16949005e+02
  2.45651993e+02 2.46677994e+02 9.45800018e+00 7.09899998e+00
  5.62599993e+00 4.44099998e+00 2.18643997e+02 5.61499977e+00
  2.07100010e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.54701004e+02 2.51287994e+02 2.54544006e+02 2.53843002e+02
  2.54412994e+02 2.52149994e+02 2.45994003e+02 2.20220001e+02
  2.48388000e+02 2.12800995e+02 2.13563995e+02 8.85999966e+00
  2.36999989e+00 1.48399997e+00 4.44099998e+00 4.72900009e+00
  8.85999978e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.54412994e+02 2.51082001e+02 2.53255997e+02 2.53957001e+02
  2.54070999e+02 2.48363007e+02 2.45651993e+02 2.13779007e+02
  2.50781998e+02 2.51123993e+02 2.20227997e+02 8.84899998e+00
  5.01700020e+00 2.98999995e-01 1.19599998e+00 1.19599998e+00
  2.98999995e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.52897003e+02 2.53598007e+02 2.53957001e+02 2.50854004e+02
  2.54772003e+02 2.51352005e+02 2.43942001e+02 2.18639008e+02
  2.51123993e+02 2.51807999e+02 2.15600006e+02 1.09309998e+01
  6.20200014e+00 4.72900009e+00 1.78299999e+00 5.02799988e+00
  2.98999995e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.52772003e+02 2.54772003e+02 2.51059998e+02 2.54059998e+02
  2.53000000e+02 2.50781998e+02 2.42003998e+02 2.20854004e+02
  2.50554001e+02 2.50326004e+02 2.17130997e+02 2.21694000e+02
  2.17798004e+02 2.20908005e+02 2.15089005e+02 4.13100004e+00
  8.85999978e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.54473007e+02 2.54059998e+02 2.54701004e+02 2.54287994e+02
  2.54701004e+02 2.51807999e+02 2.15817993e+02 2.17177002e+02
  2.48792999e+02 2.50326004e+02 2.15914001e+02 1.53940001e+01
  1.44969997e+01 8.58300018e+00 5.90299988e+00 3.23399997e+00
  1.17400002e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.69000006e+00 5.87000012e-01 5.27000010e-01 7.54999995e-01
  1.04299998e+00 3.53299999e+00 3.55500007e+00 4.45200014e+00
  5.32700014e+00 3.85400009e+00 2.19878006e+02 1.21379995e+01
  6.22399998e+00 4.44099998e+00 2.05999994e+00 3.83200002e+00
  5.87000012e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [5.87000012e-01 1.28799999e+00 2.17899990e+00 1.46700001e+00
  1.04299998e+00 1.40199995e+00 2.00000000e+00 2.98999995e-01
  1.48399997e+00 6.21299982e+00 2.16121002e+02 9.46899986e+00
  5.03900003e+00 2.36999989e+00 2.35899997e+00 5.87000012e-01
  0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [5.87000012e-01 2.00000000e+00 1.76600003e+00 1.35300004e+00
  1.22800004e+00 5.87000012e-01 1.17400002e+00 1.17400002e+00
  2.95700002e+00 5.32700014e+00 2.16294998e+02 1.24150000e+01
  6.51200008e+00 3.54399991e+00 1.18499994e+00 7.97999978e-01
  2.28000000e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.07100010e+00 2.98999995e-01 2.28000000e-01 2.98999995e-01
  1.48399997e+00 4.72900009e+00 3.24499989e+00 5.01700020e+00
  5.61499977e+00 2.19820007e+02 2.14084000e+02 1.06429996e+01
  1.06540003e+01 2.18882996e+02 3.25600004e+00 1.98300004e+00
  2.28000000e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [1.19599998e+00 1.18499994e+00 5.87000012e-01 6.77799988e+00
  5.02799988e+00 2.13882996e+02 2.20891006e+02 2.19294998e+02
  2.17084000e+02 2.17460007e+02 2.21787003e+02 2.14869003e+02
  2.17048004e+02 2.17300003e+02 3.26699996e+00 5.87000012e-01
  0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.09299994e+00 1.19599998e+00 4.69000006e+00 1.76100004e+00
  3.85400009e+00 6.22399998e+00 8.58300018e+00 9.75699997e+00
  9.74600029e+00 9.15900040e+00 9.15900040e+00 1.06540003e+01
  1.00889997e+01 8.01799965e+00 7.69700003e+00 8.85999978e-01
  0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [3.21799994e+00 1.79400003e+00 2.98999995e-01 2.07100010e+00
  1.19599998e+00 2.38100004e+00 4.73999977e+00 7.68599987e+00
  3.55500007e+00 3.84299994e+00 2.65799999e+00 2.95700002e+00
  5.92500019e+00 2.68000007e+00 8.97000015e-01 2.98999995e-01
  0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [2.61999989e+00 1.19599998e+00 2.98999995e-01 0.00000000e+00
  7.54999995e-01 8.97000015e-01 4.15299988e+00 1.19599998e+00
  2.95700002e+00 8.85999978e-01 2.28000000e-01 2.28000000e-01
  3.00000000e+00 5.27000010e-01 7.54999995e-01 3.16799998e+00
  2.28000000e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [5.87000012e-01 3.05999994e+00 5.87000012e-01 2.21700001e+00
  9.29000020e-01 5.27000010e-01 2.43499994e+00 2.61999989e+00
  8.97000015e-01 5.87000012e-01 7.05999994e+00 5.87000012e-01
  1.28799999e+00 2.28000000e-01 2.69499993e+00 8.69000018e-01
  2.28000000e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00]
 [1.76100004e+00 1.76100004e+00 1.76100004e+00 2.69000006e+00
  5.87000012e-01 3.22799993e+00 2.66300011e+00 2.54900002e+00
  1.30999994e+00 5.87000012e-01 5.87000012e-01 2.94600010e+00
  5.87000012e-01 9.29000020e-01 1.09700000e+00 1.09700000e+00
  5.27000010e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00]]






深入浅出python机器学习_8.3_神经网络实例_手写识别_MNIST数据集的使用_第3张图片

  • 附件:
    汉.jpg
    深入浅出python机器学习_8.3_神经网络实例_手写识别_MNIST数据集的使用_第4张图片
    四色.jpg
    在这里插入图片描述

你可能感兴趣的:(深入浅出,python机器学习)