- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- 【AUTOSAR】VCU开发实际项目讲解(二)----VCU软件与结构描述
大道生
单片机嵌入式硬件AUTOSAR26262VCU汽车
VCU软件描述VCU软件架构主要分为底层软件驱动和应用层控制策略,其中应用层控制策略通过基于模型的开发,自动生成代码并可与底层驱动软件实现无缝连接。VCU软件通过BOOTLOADER和CAN总线进行更新刷写。标定及诊断支持CCP/XCP标定协议支持UDS诊断协议及SAEJ1939诊断协议故障存储:128KIIC外扩EEPROM提供程序刷新Bootloader软件工具基于CAN总线的控制器刷新工具支
- 无需插件,OmniGen 凭文本指令读懂图像,多样生成随心掌控
算家云
模型构建python开发语言AI模型图像生成文字转图像人工智能OmniGen
一、介绍OmniGen是一个统一的图像生成模型,可用于执行各种任务,包括但不限于文本到图像生成、主题驱动生成、身份保留生成、图像编辑和图像条件生成。OmniGen不需要额外的插件或操作,它可以根据文本提示自动识别输入图像中的特征(例如,所需的对象、人体姿势、深度映射)可以通过OmniGen灵活地控制图像生成:引用表达式生成:你可以输入多个图像,并使用简单的通用语言来引用这些图像中的对象。OmniG
- WAVGATvcu控制器应用层软件:策略开发与实际应用
NhTvp94c
程序人生
WAVGATvcu控制器应用层软件,策略说明。整车控制器策略开发,应用层软件,在售车型最新版本软件。按照ASPIC开发流程开发,基于AUTOSAR架构开发,满足功能安全ASILC。模型和策略说明可以分开出。都是量产车型在用,不是仿真WAVGATvcu控制器应用层软件:策略开发与实际应用引言WAVGATvcu控制器应用层软件是一款在汽车工业中备受瞩目的软件产品,它不仅严格按照ASPIC(汽车电子系统
- 【机器学习:二十六、决策树】
KeyPan
机器学习机器学习决策树人工智能算法深度学习数据挖掘
1.决策树概述决策树是一种基于树状结构的监督学习算法,既可以用于分类任务,也可以用于回归任务。其主要通过递归地将数据划分为子集,从而生成一个具有条件结构的树模型。核心概念节点(Node):每个节点表示一个特定的决策条件。根节点(RootNode):树的起点,包含所有样本。分支(Branch):每个分支代表一个条件划分的结果。叶节点(LeafNode):终止节点,表示最终的决策结果。优点直观可解释:
- 手把手教你 AI 顾投:在 Ollama 中使用 Python 调用金融 API 服务
老余捞鱼
AI探讨与学习人工智能python金融llama
作者:老余捞鱼原创不易,转载请标明出处及原作者。写在前面的话:尽管Ollama本身不是一个大型语言模型(LLM)开发工具,而是一个LLM的平台。但它最近宣布了其系统中直接使用工具调用的功能,本文主要介绍了最新版本的主要更新,特别是关于功能调用的使用,并演示了如何在Ollama中使用Python调用外部API服务。一、部署Ollama在本地运行1.1设置开发环境在开始编写代码之前,最好的做法是建立一
- SQL数据分析(简单版)
编程星空
扩展知识sql数据库
一、常见数据库分类(1)关系型数据库采用关系模型组织数据的数据库,以行和列的形式存储数据,形成数据表,一组数据表组成了数据库(2)非关系型数据库非关系型数据库在严格意义上不是一种数据库,应该是一种数据结构化存储方法的集合,可以是文档或者键值对等。二、数据库常用功能(1)表数据表是数据库中存储数据的基本组成单位,例如用户信息表、订单表、采购表等。(2)查询查询是数据库中应用最多的对象之一,最常用的功
- “AI 自动化效能评估系统:开启企业高效发展新征程
上海拔俗网络
java团队开发
在当今数字化飞速发展的时代,企业面临着日益激烈的市场竞争,如何提升效率、降低成本成为了企业生存与发展的关键。AI自动化效能评估系统应运而生,它如同一把智能钥匙,为企业开启了高效发展的新征程。AI自动化效能评估系统,简单来说,就是利用人工智能技术对企业的各项业务流程、生产环节以及员工工作表现等进行全方位、自动化的评估。它能够快速收集海量的数据,并通过先进的算法模型对这些数据进行深度分析,从而精准地判
- 大模型系列-GPT算法
樨潮
人工智能
https://blog.csdn.net/None_Pan/article/details/106392965
- 力扣502-IPO-hard-贪心,优先队列 -java
小吴同学GOGOGO
算法java数据结构
思路:本题可以先构造处一个模型,我们的目的在于满足小于等于w的基础上,使得加上profits最大即可,因为是纯利润,不需要考虑w-capital的情况,所以我们只需要构造一个大根堆将所有满足条件的profits加入到堆中即可。st.w>=capitals[i].代码://@author:hairu,WU,fduclassSolution{publicintfindMaximizedCapital(
- python界面小游戏贪吃蛇_用Python实现童年小游戏贪吃蛇
weixin_39627052
python界面小游戏贪吃蛇
贪吃蛇作为一款经典小游戏,早在1976年就面世了,我最早接触它还是在家长的诺基亚手机中。尽管贪吃蛇的历史相对比较久远,但它却有着十分顽强的生命力,保持经久不衰,其中很重要的原因便是游戏厂家不断的对其进行更新迭代。现在,这款游戏无论是游戏场景、规则等都变得十分丰富。接下来,我们看一下如何通过Python简单的实现这款小游戏。规则要有游戏主界面、贪吃蛇、食物能够控制贪吃蛇移动并获取食物贪吃蛇吃了食物后
- C#中的异步编程模型
神之王楠
c#
在C#中,async和await关键字是用于异步编程的重要部分,它们允许你以同步代码的方式编写异步代码,从而提高应用程序的响应性和吞吐量。这种异步编程模型在I/O密集型操作(如文件读写、网络请求等)中特别有用,因为它允许线程在等待I/O操作完成时释放,从而执行其他工作。基本概念async:这是一个修饰符,用于标记一个方法、lambda表达式或匿名方法为异步的。异步方法包含一个或多个await表达式
- HarmonyOS Next模型剪枝方法与实践
SameX-4869
harmonyos华为
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中模型剪枝相关技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、模型剪枝原理与类型(一)基本原理在HarmonyOSNext的模型世界里,模型剪枝就像是给一棵枝繁叶茂的大树修剪枝叶,去除那些对整体结
- HarmonyOS Next模型轻量化中的数据处理优化
SameX-4869
harmonyos华为
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中模型轻量化相关的数据处理优化技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、数据处理对模型轻量化的影响(一)重要性分析在HarmonyOSNext的模型世界里,数据处理就像是为模型准备食材的厨师
- 3d系统误差分析
Ai智享
结构光3d数码相机计算机视觉
系统标定重投影误差预估在计算机视觉和三维重建领域中,评估一个相机系统标定精度的重要指标。通过比较真实的三维点在图像中的投影位置与标定模型计算出的投影位置之间的差异,来衡量标定的准确性。以下是对这一概念的详细解析:什么是系统标定?系统标定(SystemCalibration)是指对一个视觉系统(例如单目相机、双目相机系统或结构光系统)进行参数标定的过程,包括:内参标定:相机的内部参数(如焦距、光心、
- LeetCode 383. 赎金信
不玩return的马可乐
算法/题库leetcode算法职场和发展蓝桥杯数据结构
在本篇博客中,我们将探讨LeetCode上的一个经典问题:383.赎金信。这个问题考察了我们对字符串处理和字符计数的理解和应用。问题描述解题思路这个问题可以通过字符计数的方法来解决。我们首先统计magazine中每个字符出现的次数,然后检查ransomNote中的每个字符是否都能在magazine中找到足够的数量。如果ransomNote中的任何一个字符在magazine中的数量不足,我们就返回f
- 黄金矿工小游戏(Java)
不玩return的马可乐
小项目javaintellij-ideaui算法
在游戏开发的世界里,用代码构建一个充满趣味的游戏是一次极具挑战与收获的旅程。今天,我将带大家深入了解我用Java开发的“黄金矿工”游戏背后的代码逻辑和实现细节,一同领略编程与游戏结合的魅力。一、引言这款“黄金矿工”游戏拥有经典的玩法,玩家通过操控钩子抓取屏幕中的各种物体,包括黄金、石头和炸弹等,目标是在规定时间内达到一定的积分以进入下一关。同时,游戏还配备了登录注册系统,确保玩家数据的记录和管理,
- 【经典必看】对数价格刻度 vs. 线性价格刻度:有什么区别?Logarithmic Price Scale vs. Linear Price Scale: What‘s the Difference?
精通代码大仙
投资数据挖掘python机器学习人工智能大数据深度学习自然语言处理
对数价格刻度vs.线性价格刻度:有什么区别?对数价格刻度vs.线性价格刻度:概览股票图表的解读可以根据查看数据时使用的不同价格刻度而有所不同。大多数在线和经纪商图表软件可以显示不同风格的图表。最常用的两种价格刻度用于分析价格变动:对数价格刻度—也称为“对数”—表示价格间距取决于基础资产价格的变化百分比。这通常是默认的图表样式。线性价格刻度—也称为“算术”—表示价格在Y轴上的间距是等距的。线性图表显
- 一文看懂llama2(原理&模型&训练)
Qpeterqiufengyi
llama
自从Transformer架构问世以来,大型语言模型(LargeLanguageModels,LLMs)以及AIGC技术的发展速度惊人,它们不仅在技术层面取得了重大突破,还在商业应用、社会影响等多个层面展现出巨大潜力。随着ChatGPT的推出,这一技术日益走进大众视野,这也预示着一个由生成式AI塑造的未来正在加速到来。与此同时,MetaAIMetaAI在2023年推出了LLama(LargeLan
- Python|基于DeepSeek大模型,实现文本内容仿写(8)
写python的鑫哥
AI大模型实战应用人工智能python大模型DeepSeekKimi文本仿写
前言本文是该专栏的第8篇,后面会持续分享AI大模型干货知识,记得关注。我们在处理文本数据项目的时候,有时可能会遇到这样的需求。比如说,指定某些文本模板样例,需要仿写或者生成该“模板”样例数据。再或者说,通过给予某些指定类型的关键词,生成关键词相关领域的文本素材或内容。如果单单投入人力去完成,这肯定是没问题,但耗费的更多是人力成本。而现阶段,对于这种需求,大大可以选择大模型去完成。而本文,笔者将基于
- 在 Python 中使用 Ollama API
一路追寻
大模型PythonOllamaLLMlinuxpython
在Python中使用OllamaAPI在本文中,我们将简单介绍如何在Python中使用OllamaAPI。无论你是想进行简单的聊天对话、使用流式响应处理大数据、还是希望在本地进行模型的创建、复制、删除等操作,本文都可以为你提供指导。此外,我们还展示了如何使用自定义客户端和异步编程来优化你的应用程序性能,环境准备在开始使用Python与OllamaAPI交互之前,请确保您的开发环境满足以下条件:Py
- Java应用的多租户架构设计
楠贝
java开发语言
Java应用的多租户架构设计大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!多租户架构(Multi-Tenancy)是SaaS(SoftwareasaService)应用中常见的设计模式,它允许多个租户(客户)共享同一个应用实例,同时保证数据隔离和独立性。在Java应用中实现多租户架构,涉及到数据模型设计、访问控制、资源隔离等多个方面。1.数据模型设计在多租户架构
- python中drop用法 去重_如何使用drop_duplicates进行简单去重(入门篇)
weixin_39991055
python中drop用法去重
什么是去重呢?简单来说,数据去重指的是删除重复数据。在一个数字文件集合中,找出重复的数据并将其删除,只保存唯一的数据单元。在我们的数据预处理过程中,这是一项我们经常需要进行的操作。去重有哪些好处?节省存储空间提升写入性能提高模型精度今天我们就来简单介绍一下,在pandas中如何使用drop_duplicates进行去重。一、函数体及主要参数函数体:df.drop_duplicates(subset
- 详解类与对象——c++对象模型和this指针
tanactor
c++
(^_^)一.成员变量和成员函数分开存储只有非静态成员变量才属于类的对象上classPerson{public:Person(){mA=0;}//非静态成员变量占对象空间intmA;//静态成员变量不占对象空间staticintmB;//函数也不占对象空间,所有函数共享一个函数实例voidfunc(){coutmAage=age;}Person&PersonAddPerson(Personp){t
- SD ComfyUI工作流 平面模型房屋3D渲染
Mr数据杨
StableDiffusionAI绘画ComfyUIAI绘画
文章目录平面模型房屋3D渲染SD模型Node节点工作流程开发与应用效果展示平面模型房屋3D渲染此工作流是为将平面模型房屋图转换为3D渲染而设计,利用先进的模型和节点处理图像,增加细节和色彩,以及通过超分辨率技术增强最终图像的清晰度。流程从加载图像开始,经过一系列的处理步骤,包括图像缩放、条件编码、模型加载,最终通过高级放大技术提高图像分辨率,以达到高清的视觉效果。SD模型模型名称说明majicMI
- Java实战:Spring Boot实现多租户思路
拥抱AI
javaspringboot开发语言
引言在当今云计算与SaaS服务盛行的时代,多租户架构成为了很多企业级应用的基础设计之一。这种架构允许单一应用程序实例为多个组织(租户)提供服务,同时保持各租户数据和配置的隔离性。SpringBoot作为现代Java开发领域的翘楚框架,其简洁明快的风格与高度灵活性使它成为构建多租户应用的理想选择。本文将带领您走进SpringBoot的世界,详细探讨如何实现多租户架构。一、多租户架构概述多租户模型多租
- 基于Damo-YOLO和DyHead检测头的YOLOv8优化:多尺度目标检测的创新方案【YOLOv8】
步入烟尘
YOLO系列创新涨点超专栏YOLO目标检测人工智能YOLOv8
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录基于Damo-YOLO和DyHead检测头的YOLOv8优化:多尺度目标检测的创新方案【YOLOv8
- YOLOv8与Transformer:探索目标检测的新架构
AI架构设计之禅
AI大模型应用入门实战与进阶大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
YOLOv8与Transformer:探索目标检测的新架构关键词:目标检测,深度学习,YOLOv8,Transformer,计算机视觉,卷积神经网络摘要:目标检测是计算机视觉领域的一项重要任务,其目标是从图像或视频中识别和定位特定对象。近年来,YOLO(YouOnlyLookOnce)系列算法以其高精度和高速度成为目标检测领域的佼佼者。最新版本的YOLOv8引入了Transformer架构,进一步
- Node.js 到底是什么
yqcoder
Node.js从入门到精通node.js
Node.js是一个基于ChromeV8引擎的JavaScript运行环境,它允许开发者使用JavaScript编写服务器端代码。一、主要特点1.事件驱动和非阻塞I/O模型Node.js采用事件驱动架构,通过回调函数处理I/O操作,这使得它在处理大量并发请求时表现出色。当执行I/O操作(如文件读写、网络请求等)时,Node.js不会阻塞程序的执行,而是继续处理其他任务,当I/O操作完成后,通过回调
- Prometheus Alertmanager设置与告警规则配置详解
范范0825
prometheus
PrometheusAlertmanager设置与告警规则配置详解Prometheus是一个开源的监控和告警系统,其设计理念是通过时间序列数据库存储指标数据,并通过多维数据模型和查询语言进行数据分析。Prometheus的告警系统由两部分组成:Prometheus服务器本身和Alertmanager。Alertmanager负责接收来自Prometheus的告警,执行通知的分发、抑制和聚合。本文将
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多