- Vlang编写轻量化多线程爬虫
q56731523
爬虫typescript开发语言前端
Vlang作为新兴语言,他简单、快速和安全让爬虫有不一样的体验。在V中,并发模型基于轻量级的协程(称为goroutines,类似于Go语言的goroutine)和通道(channels)来实现。虽然说V语言目前还在快速发展中,但它的并发特性已经可以用于构建多线程(实际上是协程)应用程序,例如网络爬虫。所以说,用V语言(Vlang)完全支持编写多线程爬虫。它提供了强大的并发模型和网络库,非常适合高效
- SpringAIAlibaba正式版发布!
小付爱coding
ai
SpringAIAlibaba正式版发布!SpringAIAlibaba到底是个啥?没错!它还是以SpringAI为基础,深度集成阿里自己的百炼平台:支持ChatBot、工作流、多智能体应用开发模式的AI框架。简单来说就是将调用大模型抽象成一个API,可以直接调用来实现,只不过可选参数更多它的核心能力:抽象+简化+扩展SpringAIAlibaba最大的价值在于:它把调用大模型这件事,抽象成了一个
- 阿里也出手了!十分钟接入Spring Cloud Alibaba AI 体验JAVA微服务AI人工智能,可接通义千问等模型,
Java斌
十分钟学会JavaAI人工智能java微服务
什么是SpringAISpringAI是从著名的Python项目LangChain和LlamaIndex中汲取灵感,它不是这些项目的直接移植,它的成立信念是,「下一波生成式人工智能应用程序将不仅适用于Python开发人员,而且将在许多编程语言中无处不在」。我们可以从SpringAI的官网描述中,总结出SpringAI的几个核心的关键词:提供抽象能力简化AI应用的开发模型与向量支持AI集成与自动配置
- 解密企业级大模型智能体Agentic AI 关键技术:MCP、A2A、Reasoning LLMs- GPT源代码解析
大模型与Agent智能体
A2AMCPDeepSeekA2AMCPManusADK
解密企业级大模型智能体AgenticAI关键技术:MCP、A2A、ReasoningLLMs-GPT源代码解析我们可以稍微看一下,这是我们GPT的基于它的源代码产生的可视化的内容。这边是model,我们在谈这个sampling的时候,本身首先就是说它这个probabilitydistribution,会有很多的参数对它进行影响。例如temperature,如果你是hightemperature的话
- Gemma Chatbot 架构深度剖析:从 C++ 核心到多语言推理的工程实践
雷羿 LexChien
LLM人工智能pythonc++LLMRAG
GemmaChatbot架构深度剖析:从C++核心到多语言推理的工程实践随着大语言模型(LLM)本地化需求日益提升,如何设计一套高效、可扩展、易于维护的本地聊天系统。GemmaChatbot以C++为推理核心,结合Python前端与多语言支持,实现了高性能与灵活性的完美结合。本文将深入剖析其程序架构、模块划分、数据流设计与工程实践细节。一、总体架构设计GemmaChatbot采用“前后端分离”与“
- CosyVoice升级版 - 阿里最新开源语音克隆、文本转语音项目 支持音色保存 本地一键整合包下载
昨日之日2006
ai语音人工智能音视频语音识别
近日,阿里通义实验室发布开源语音大模型项目FunAudioLLM,而且一次包含两个模型:SenseVoice和CosyVoice。今天分享的这个是v3ucn大佬优化过的升级版,新增自定义音色保存,优化长文本生成以及修复上个版本错误提示的bug。一键包更新地址:CosyVoice升级版-阿里最新开源语音克隆、文本转语音项目
- 【后端开发】Django
大雨淅淅
后端开发sqlite数据库后端django
目录一、Django是什么,为何选择它?二、学习前的准备工作三、Django项目初体验四、深入Django核心概念(一)模型(Model)(二)视图(View)(三)模板(Template)(四)URL配置五、实战演练:打造一个简单博客(一)搭建博客基础框架(二)实现文章发布功能(三)展示文章列表和详情六、总结与展望一、Django是什么,为何选择它?在PythonWeb开发的广袤天地里,Djan
- 用python写一个hello world、把代码写下来_程序员如何利用Python写出hello world
weixin_39699070
用python写一个helloworld把代码写下来
学习编程语言的第一步,让你的程序对这个世界说一声helloworld!这个程序是编程界经典中的经典,让无数编程恐惧症患者得以顺利写出第一个程序,从而走上大神的不归路!1.新建文本文档先让我们在桌面上新建一个文本文档(helloWorld.txt)2.键入代码现在我们在桌面上已经有了一个空白的文本文档helloWorld.txt,接下来我们打开helloWorld.txt键入下面这这行代码print
- 【AI与数据管理】基于AI大模型的企业元数据管理方案
暴躁小师兄数据学院
人工智能ai语言模型
基于AI大模型的元数据关键解决方案元数据(metadata)是描述数据的数据,例如数据的来源、结构、类型和质量信息。它在数据管理、分析和应用中至关重要。随着人工智能(AI)大模型(如基于Transformer的模型)的发展,这些模型凭借其强大的自然语言处理、模式识别和生成能力,为元数据处理提供了高效、自动化的解决方案。下面,我将逐步解释基于AI大模型的元数据关键解决方案,帮助您理解核心方法、挑战和
- 【人工智能之大模型】思维链(Chain of Thought,CoT) 在大模型中是如何引导模型逐步推理的?
985小水博一枚呀
人工智能pytorch语言模型大模型
【人工智能之大模型】思维链(ChainofThought,CoT)在大模型中是如何引导模型逐步推理的?【人工智能之大模型】思维链(ChainofThought,CoT)在大模型中是如何引导模型逐步推理的?文章目录【人工智能之大模型】思维链(ChainofThought,CoT)在大模型中是如何引导模型逐步推理的?前言思维链(CoT)在大模型中的应用示例示例任务:应用思维链提示:模型输出:分析:思维
- 一文读懂 AI 模型训练流程
AI赋能
人工智能人工智能
一文读懂AI模型训练流程在当今数字化时代,AI技术发展得如火如荼,广泛应用于各个领域,而这背后离不开AI模型的训练。AI模型训练流程就像是一场精心策划的“智慧锻造之旅”,每一步都至关重要。今天,咱们就来深入了解一下这个神秘的过程。数据准备:夯实基础数据,堪称AI模型训练的“原材料”,其质量直接决定了最终模型的性能。这就好比建造一座高楼,只有用优质的砖块、钢筋等材料,才能让大楼稳固结实。数据收集我们
- GaussDB 权限管理:从 RBAC 到精细化控制的技术实践
如清风一般
gaussdb
GaussDB权限管理:从RBAC到精细化控制的技术实践一、引言在分布式数据库环境中,权限管理是保障数据安全和合规性的核心环节。GaussDB(开源版及云服务版)提供了一套完整的权限管理体系,支持基于角色的访问控制(RBAC)、细粒度权限分配和动态审计等功能。本文将深入解析GaussDB的权限管理模型、操作方法及实战技巧。二、GaussDB权限管理模型核心对象与层级GaussDB的权限管理围绕以下
- 什么是智能体(Agent)?
用什么都重名
大模型相关人工智能Agent大模型
目录前言一、大语言模型1.什么是大语言模型?2.应用领域二、什么是Agent三、Agent核心特点1.感知能力2.规划能力3.行动能力4.记忆能力总结前言目前智能体市场正处于快速发展阶段,呈现出市场规模增长迅猛、应用领域广泛、竞争格局多元化等特点。基于此,让我们一起来学习一下何为智能体。一、大语言模型1.什么是大语言模型?大语言模型是一种采用大量数据进行训练的人工智能模型,主要用于理解和生成自然语
- C++游戏开发的一些高级常识(持续更新)
Silver Gamer
迈向游戏引擎工程师C++
C++游戏开发高级常识(纲领整理)前言序章C++开发细节基础1.C++类型转换2.C++静态相关3.C++函数指针4.C++函数指针返回值5.C++常量6.C++开发常用设计模式7.常用STL8.C++面向对象理解9.C++构造与析构10.虚拟内存与物理内存11.C++多态实现原理12.操作系统运行程序流程13.智能指针及其实现14.malloc和alloc的关联与详细过程15.C++内存模型16
- 【AI论文】Skywork-Reward-V2:通过人机协同实现偏好数据整理的规模化扩展
摘要:尽管奖励模型(RewardModels,RMs)在基于人类反馈的强化学习(ReinforcementLearningfromHumanFeedback,RLHF)中发挥着关键作用,但当前最先进的开源奖励模型在大多数现有评估基准上表现欠佳,无法捕捉人类复杂且微妙的偏好谱系。即便采用先进训练技术的方法也未能显著提升性能。我们推测,这种脆弱性主要源于偏好数据集的局限性——这些数据集往往范围狭窄、标
- Sider多模型AI助手平台深度评测:开发者高效编程的秘密武器
梦玄海
人工智能copilot自动化运维开源
一、为什么开发者需要多模型平台?当技术决策面临关键选择时:核心价值:避免被单一模型局限思维,通过横向对比获得最佳解决方案二、Sider核心功能全景图模块支持能力开发场景示例模型库GPT-4/Claude/Gemini/本地模型等`gitdiff智能编程实时补全/调试/注释生成VSCode中自动生成JSDoc文档处理PDF/Word/网页解析技术白皮书关键信息提取自动化定时任务+API集成每日自动生
- AIGC空间智能在服装设计领域的颠覆性变革
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶AIGCai
AIGC空间智能在服装设计领域的颠覆性变革关键词:AIGC、空间智能、服装设计、数字孪生、生成式AI、3D人体建模、智能设计系统摘要:本文深入探讨AIGC(人工智能生成内容)与空间智能技术在服装设计领域的融合创新,揭示其如何通过三维人体建模、场景模拟、智能生成算法重构传统设计流程。从技术原理层解析空间智能的核心模块,结合生成对抗网络(GAN)、Transformer模型等前沿算法,展示从创意生成到
- Docker网络模型深度解析|Docker|网络模型|容器化
concisedistinct
运维编程开发技术栈Dockerdocker容器运维
目录1.Docker网络模型概述1.1Docker网络的基本概念1.2Docker的主要网络模式2.Bridge网络模式2.1Bridge模式的工作原理2.2Bridge模式的网络配置2.3Bridge模式的应用场景3.Host网络模式3.1Host模式的工作原理3.2Host模式的优缺点3.3Host模式的应用场景4.Overlay网络模式4.1Overlay模式的工作原理4.2Overlay模
- Itheum 借助 Walrus 实现音乐人和 AI 的大规模数据资产化
Sui_Network
SuiWalrus合作伙伴人工智能大数据去中心化区块链web3
Itheum是一个赋予人类和AI智能体真正数据所有权的协议,目标是在AI时代成为所有数据的去中心化存储、资产化、知识产权透明和变现基础设施。Itheum初期专注于为音乐行业提供技术支持,可将真实世界的数据资产化为可交易的数字资产,用于控制和交易大型文件,如母带音频、WAV音轨文件、高清视频,以及定制AI模型,推动自主数字数据经济的发展。Itheum的初期重点是通过为音乐家和AI代理提供技术来颠覆音
- 编程效率的飞跃、创新驱动的测试与行业应用的新篇章
###引言 在人工智能技术飞速发展的今天,AI工具、大模型及行业应用正在深刻改变着开发者的工作模式与各领域的发展格局。从智能编码助手到自动化测试平台,从大模型落地实践到垂直行业解决方案,AI正成为提升效率、驱动创新的核心引擎。本文将围绕“AI技术如何重塑你的工作与行业”这一主题,探讨AI工具、AI编程、AI测试以及AI行业应用和大模型落地等方面的影响。 ###一、AI工具重塑开发工作 #
- Blender 导出
charon桐
blender3d
导出导出前的设置不论导出fbx文件还是obj文件,都要进行下面的操作:将所有要导出的物体合并。然后选中按ctrl+A选择全部变换。然后选择对应格式进行导出。Fbx导出带材质的fbx模型参考资料:blender1分钟导出带有材质的fbx模型_哔哩哔哩_bilibiliObj打包导出OBJ选中模型->外部数据,打包资源(即可生成一个mtl文件(包含材质信息的文件)->导出OBJ->限制仅选中,选择三角
- 【Go语言-Day 7】循环控制全解析:从 for 基础到 for-range 遍历与高级控制
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【Go语言-Day 5】掌握Go的运算脉络:算术、逻辑到位的全方位指南
吴师兄大模型
Go语言从入门到精通golang开发语言后端人工智能pythongo语言LLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 中电金信 :十问高质量数据集:金融大模型价值重塑有“据”可循
2025年,随着大模型在金融领域的深度应用,高质量数据集已逐渐成为决定模型性能的“基石”。面对数据要素价值释放的关键机遇期,国家政策不断深入推进:2月,国务院国资委启动“AI+”专项行动,着力攻克数据难题;5月,数字中国峰会发布了首批30项央企AI高质量数据集成果;6月,在央国企金融领域人工智能高质量数据集工作推进会上,14家企业共同签署了“央国企金融数据产业共同体倡议书”,旨在推动人工智能与数据
- 深度剖析:Onecode 如何重塑 DDD 领域模型设计
低代码老李
领域设计低代码DDD人工智能低代码
在软件技术的演进浪潮中,架构设计理念与开发工具不断迭代,推动着行业持续向前发展。领域驱动设计(DDD)以其对业务本质的深度洞察和对复杂系统架构的卓越驾驭能力,逐渐成为大型软件项目构建的关键技术。而Onecode作为一款极具创新性的开发工具,与DDD的深度融合,为软件开发流程带来了全方位的革新。今天,就让我们深入探讨Onecode在DDD领域模型设计中的独特优势与深远影响。一、代码生成:效率与质量的
- Django5.1(95)—— 通用编辑视图(API参考)
小天的铁蛋儿
djangoPythondjangopython后端
通用编辑视图本页介绍了以下视图,为编辑内容奠定了基础。django.views.generic.edit.FormViewdjango.views.generic.edit.CreateViewdjango.views.generic.edit.UpdateViewdjango.views.generic.edit.DeleteView备注本页的一些例子假定Author模型已在myapp/mode
- 探秘Xtoon Boot DDD:以领域驱动设计重塑微服务架构
探秘XtoonBootDDD:以领域驱动设计重塑微服务架构去发现同类优质开源项目:https://gitcode.com/在软件开发中,尤其是大型复杂系统的构建中,领域驱动设计(Domain-DrivenDesign,简称DDD)是一种被广泛接受的设计方法论。它强调了业务逻辑与系统结构的紧密耦合,帮助开发者更好地理解和表达业务模型。而是一个基于SpringBoot的轻量级框架,旨在简化和加速DDD
- 03 数据可视化的世界非常广阔,除了已提到的类型,还有许多更细分或前沿的可视化形式。
晨曦543210
信息可视化人工智能
十五、机器学习与数据科学专用图表特征重要性图(FeatureImportancePlot)用途:展示机器学习模型中各特征对预测结果的贡献度。示例:随机森林模型中影响房价预测的关键因素。混淆矩阵热力图(ConfusionMatrixHeatmap)用途:分类模型性能评估,显示预测结果与真实标签的对比。示例:疾病诊断模型的真阳性/假阳性分布。学习曲线(LearningCurve)用途:分析模型训练过程
- 当争论者还在讨论AI的边界,实践者早已用这些技术解决实际问题
渡难繁辰
人工智能拥抱AI人工智能ai
——普通人参与AI革命的关键路径一、AI应用五大核心组件(通俗拆解版)1️⃣LLM:AI的「决策核心」本质:大型语言模型(如DeepSeek、通义千问),具备语言理解与生成能力能力边界:✅处理文本类任务(写作/翻译/摘要)❌无法获取实时信息(如最新股价)⚠️存在“幻觉”(虚构信息)风险案例对比:问:“鲁迅和周树人什么关系?”基础LLM:“两位都是著名作家”(错误)增强版LLM:“周树人是鲁迅本名”
- PagedAttention和Continuous Batching
流浪大人
大模型深度学习人工智能机器学习
PagedAttention是什么PagedAttention是一种用于优化Transformer架构中注意力机制的技术,主要用于提高大语言模型在推理阶段的效率,特别是在处理长序列数据时能有效减少内存碎片和提高内存利用率。它借鉴了操作系统中虚拟内存分页机制的思想。工作原理传统注意力机制的局限性:传统的注意力机制在处理长序列时,需要为每个位置计算注意力得分并存储中间结果,这会导致内存占用随着序列长度
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多