numpy.reshape参数-1解释

numpy.reshape

官方文档给出的解释

值得注意的是,reshape给出参数newreshape可以传-1,官方文档解释,传-1表示剩下来的自动根据矩阵的规模和剩余维度进行计算

大意是说,数组新的shape属性应该要与原来的配套,如果等于-1的话,那么Numpy会根据剩下的维度计算出数组的另外一个shape属性值。

举个例子:

z = np.array([[1, 2, 3, 4],
          [5, 6, 7, 8],
          [9, 10, 11, 12],
          [13, 14, 15, 16]])
z.shape
(4, 4)

z.reshape(-1)

z.reshape(-1)
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16])

z.reshape(-1, 1)

也就是说,先前我们不知道z的shape属性是多少,但是想让z变成只有一列,行数不知道多少,通过z.reshape(-1,1),Numpy自动计算出有12行,新的数组shape属性为(16, 1),与原来的(4, 4)配套。

z.reshape(-1,1)
 array([[ 1],
        [ 2],
        [ 3],
        [ 4],
        [ 5],
        [ 6],
        [ 7],
        [ 8],
        [ 9],
        [10],
        [11],
        [12],
        [13],
        [14],
        [15],
        [16]])

z.reshape(-1, 2)
newshape等于-1,列数等于2,行数未知,reshape后的shape等于(8, 2)

z.reshape(-1, 2)
 array([[ 1,  2],
        [ 3,  4],
        [ 5,  6],
        [ 7,  8],
        [ 9, 10],
        [11, 12],
        [13, 14],
        [15, 16]])

同理,只给定行数,newshape等于-1,Numpy也可以自动计算出新数组的列数。

作者:李彬
链接:https://www.zhihu.com/question/52684594/answer/157491724
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

你可能感兴趣的:(深度学习,python)