import torch as t
import matplotlib.pyplot as plt
import torchvision as tv
import torchvision.transforms as transforms
from torch.autograd import Variable
from torchvision.transforms import ToPILImage
show = ToPILImage() # 可以把Tensor转成Image,方便可视化
第一次运行程序torchvision会自动下载CIFAR-10数据集,
大约100M,需花费一定的时间,
如果已经下载有CIFAR-10,可通过root参数指定
#定义对数据的预处理
transform = transforms.Compose([
transforms.ToTensor(), # 转为Tensor
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
])
# 训练集
trainset = tv.datasets.CIFAR10(
root='./data/cifar/',
train=True,
download=True,
transform=transform)
trainloader = t.utils.data.DataLoader(trainset, batch_size=4, shuffle=True)
# 测试集
testset = tv.datasets.CIFAR10(
'./data/cifar/',
train=False,
download=True,
transform=transform)
testloader = t.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
(data, label) = trainset[100]
print(classes[label])
# (data + 1) / 2是为了还原被归一化的数据
show((data + 1) / 2).resize((100, 100))
dataiter = iter(trainloader)
images, labels = dataiter.next() # 返回4张图片及标签
print(' '.join('%11s'%classes[labels[j]] for j in range(4)))
a=show(tv.utils.make_grid((images+1)/2)).resize((400,100))
plt.imshow(a,cmap='gray')
plt.axis('off')
plt.show()
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(x.size()[0], -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
#print(net)
from torch import optim
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
#t.set_num_threads(8)
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 输入数据
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
# 梯度清零
optimizer.zero_grad()
# forward + backward
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
# 更新参数
optimizer.step()
# 打印log信息
running_loss += loss.item()
if i % 2000 == 0: # 每2000个batch打印一下训练状态
print('[%d, %5d] loss: %.3f' \
% (epoch, i, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
函数DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
num_workers=0, collate_fn=default_collate, pin_memory=False,
drop_last=False)