pytorh之卷积神经网络lenet的实现(CIFAR10数据集)

pytorh之lenet的实现(CIFAR10数据集)

import torch as t
import matplotlib.pyplot as plt
import torchvision as tv
import torchvision.transforms as transforms
from torch.autograd import Variable
from torchvision.transforms import ToPILImage
show = ToPILImage() # 可以把Tensor转成Image,方便可视化

第一次运行程序torchvision会自动下载CIFAR-10数据集,
大约100M,需花费一定的时间,
如果已经下载有CIFAR-10,可通过root参数指定

#定义对数据的预处理
transform = transforms.Compose([
        transforms.ToTensor(), # 转为Tensor
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
                             ])

# 训练集
trainset = tv.datasets.CIFAR10(
                    root='./data/cifar/', 
                    train=True, 
                    download=True,
                    transform=transform)
trainloader = t.utils.data.DataLoader(trainset, batch_size=4, shuffle=True)

# 测试集
testset = tv.datasets.CIFAR10(
                    './data/cifar/',
                    train=False, 
                    download=True, 
                    transform=transform)

testloader = t.utils.data.DataLoader(
                    testset,
                    batch_size=4, 
                    shuffle=False,
                    )

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

(data, label) = trainset[100]
print(classes[label])

# (data + 1) / 2是为了还原被归一化的数据
show((data + 1) / 2).resize((100, 100))

dataiter = iter(trainloader)
images, labels = dataiter.next() # 返回4张图片及标签
print(' '.join('%11s'%classes[labels[j]] for j in range(4)))
a=show(tv.utils.make_grid((images+1)/2)).resize((400,100))
plt.imshow(a,cmap='gray')
plt.axis('off')
plt.show()

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5) 
        self.conv2 = nn.Conv2d(6, 16, 5)  
        self.fc1   = nn.Linear(16*5*5, 120)  
        self.fc2   = nn.Linear(120, 84)
        self.fc3   = nn.Linear(84, 10)

    def forward(self, x): 
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) 
        x = F.max_pool2d(F.relu(self.conv2(x)), 2) 
        x = x.view(x.size()[0], -1) 
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)        
        return x
net = Net()
#print(net)
from torch import optim
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

criterion = nn.CrossEntropyLoss() # 交叉熵损失函数

#t.set_num_threads(8)
for epoch in range(2):     
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        
        # 输入数据
        inputs, labels = data
        inputs, labels = Variable(inputs), Variable(labels)
        
        # 梯度清零
        optimizer.zero_grad()
        
        # forward + backward 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()   
        
        # 更新参数 
        optimizer.step()
        
        # 打印log信息
        running_loss += loss.item()
        if i % 2000 == 0: # 每2000个batch打印一下训练状态
            print('[%d, %5d] loss: %.3f' \
                  % (epoch, i, running_loss / 2000))
            running_loss = 0.0
print('Finished Training')

pytorh之卷积神经网络lenet的实现(CIFAR10数据集)_第1张图片
函数DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,
num_workers=0, collate_fn=default_collate, pin_memory=False,
drop_last=False)

  1. dataset:数据集
  2. batch_size:批处理量
  3. shuffle::打乱数据
  4. sampler: 样本抽样
  5. num_workers:使用多进程加载的进程数,0代表不使用多进程
  6. collate_fn: 如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可
  7. pin_memory:是否将数据保存在pin memory区,pin memory中的数据转到GPU会快一些
  8. drop_last:dataset中的数据个数可能不是batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃

运行时·可能会出现[errno 32]Broken pipe的错误,主要原因是num_workers=2,引起的,删掉即可,num_workers:使用多进程加载的进程数,0代表不使用多进程

pytorh之卷积神经网络lenet的实现(CIFAR10数据集)_第2张图片

你可能感兴趣的:(pytorch)