1X1卷积核到底有什么作用

1*1的卷积核在NIN、Googlenet中被广泛使用,但其到底有什么作用也是一直困扰的问题,这里总结和归纳下在网上查到的自认为很合理的一些答案,包括1)跨通道的特征整合2)特征通道的升维和降维  3)减少卷积核参数(简化模型)

部分转载自caffe.cn

作用:
1. 实现跨通道的交互和信息整合
2. 进行卷积核通道数的降维和升维
3.对于单通道feature map 用单核卷积即为乘以一个参数,而一般情况都是多核卷积多通道,实现多个feature map的线性组合

4、可以实现与全连接层等价的效果。如在faster-rcnn中用1*1*m的卷积核卷积n(如512)个特征图的每一个位置(像素点),其实对于每一个位置的1*1卷积本质上都是对该位置上n个通道组成的n维vector的全连接操作。

下面详细解释一下:
1. 1×1的卷积层(可能)引起人们的重视是在NIN的结构中,论文中林敏师兄的想法是利用MLP代替传统的线性卷积核,从而提高网络的表达能力。文中同时利用了跨通道pooling的角度解释,认为文中提出的MLP其实等价于在传统卷积核后面接cccp层,从而实现多个feature map的线性组合,实现跨通道的信息整合。而cccp层是等价于1×1卷积的,因此细看NIN的caffe实现,就是在每个传统卷积层后面接了两个cccp层(其实就是接了两个1×1的卷积层)。
2. 进行降维和升维引起人们重视的(可能)是在GoogLeNet里。对于每一个Inception模块(如下图),原始模块是左图,右图中是加入了1×1卷积进行降维的。虽然左图的卷积核都比较小,但是当输入和输出的通道数很大时,乘起来也会使得卷积核参数变的很大,而右图加入1×1卷积后可以降低输入的通道数,卷积核参数、运算复杂度也就跟着降下来了。以GoogLeNet的3a模块为例,输入的feature map是28×28×192,3a模块中1×1卷积通道为64,3×3卷积通道为128,5×5卷积通道为32,如果是左图结构,那么卷积核参数为1×1×192×64+3×3×192×128+5×5×192×32,而右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了1×1×192×64+(1×1×192×96+3×3×96×128)+(1×1×192×16+5×5×16×32),参数大约减少到原来的三分之一。同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature map数量,左图pooling后feature map是不变的,再加卷积层得到的feature map,会使输出的feature map扩大到416,如果每个模块都这样,网络的输出会越来越大。而右图在pooling后面加了通道为32的1×1卷积,使得输出的feature map数降到了256。GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层的AlexNet的十二分之一(当然也有很大一部分原因是去掉了全连接层)。

1.JPG


最近大热的MSRA的ResNet同样也利用了1×1卷积,并且是在3×3卷积层的前后都使用了,不仅进行了降维,还进行了升维,使得卷积层的输入和输出的通道数都减小,参数数量进一步减少,如下图的结构。(不然真不敢想象152层的网络要怎么跑起来TAT)

 

2.JPG

 

另一个很有代表性的降维的例子

主要用在inception结构中,称之为"bottleneck",主要用于降维,节省计算量,比如在Resnet中,inception的一个分支长这样

假设上一层的feature map是w*h*256,并且最后要输出的是256个feature map,如果用3*3的核,操作数大概是w*h*256*3*3*256 =589824*w*h ,而在bottleneck架构中大概是 w*h*256*1*1*64 + w*h*64*3*3*64 +w*h*64*1*1*256 = 69632*w*h,,前者大概是后者的8.5倍,所以节省的还是很多的。

另外有人说也可以增加非线性,因为一般1*1后面都要接Relu,所以增加了两个非线性层

 

 

 

3.对于单通道的feature map和单个卷积核之间的卷积来说,1X1卷积核就是对输入的一个比例缩放,因为1X1卷积核只有一个参数,这个核在输入上滑动,就相当于给输入数据乘以一个系数。对于多通道而言有一个重要的功能,就是可以在保持feature map 尺寸不变(即不损失分辨率)的前提下大幅增加非线性特性,把网络做得很deep。CNN里的卷积大都是多通道的feature map和多通道的卷积核之间的操作(输入的多通道的feature map和一组卷积核做卷积求和得到一个输出的feature map),如果使用1x1的卷积核,这个操作实现的就是多个feature map的线性组合,可以实现feature map在通道个数上的变化。接在普通的卷积层的后面,配合激活函数,就可以实现network in network的结构了。

 

 

你可能感兴趣的:(机器学习与深度学习理论2)