JAVA程序设计:完美矩形(LeetCode:391)

我们有 N 个与坐标轴对齐的矩形, 其中 N > 0, 判断它们是否能精确地覆盖一个矩形区域。

每个矩形用左下角的点和右上角的点的坐标来表示。例如, 一个单位正方形可以表示为 [1,1,2,2]。 ( 左下角的点的坐标为 (1, 1) 以及右上角的点的坐标为 (2, 2) )。

示例 1:

rectangles = [
  [1,1,3,3],
  [3,1,4,2],
  [3,2,4,4],
  [1,3,2,4],
  [2,3,3,4]
]

返回 true。5个矩形一起可以精确地覆盖一个矩形区域。
 

示例 2:

rectangles = [
  [1,1,2,3],
  [1,3,2,4],
  [3,1,4,2],
  [3,2,4,4]
]

返回 false。两个矩形之间有间隔,无法覆盖成一个矩形。
 

示例 3:

rectangles = [
  [1,1,3,3],
  [3,1,4,2],
  [1,3,2,4],
  [3,2,4,4]
]

返回 false。图形顶端留有间隔,无法覆盖成一个矩形。
 

示例 4:

rectangles = [
  [1,1,3,3],
  [3,1,4,2],
  [1,3,2,4],
  [2,2,4,4]
]

返回 false。因为中间有相交区域,虽然形成了矩形,但不是精确覆盖。

思路:思路来源于评论区的一个大佬,感谢其分享优秀的方法。

如果是完美矩形 那么一定满足两点: (1)最左下 最左上 最右下 最右上 的四个点只出现一次 其他点成对出现 (2)四个点围城的矩形面积 = 小矩形的面积之和

class Solution {
    public boolean isRectangleCover(int[][] rectangles) {
        int left=Integer.MAX_VALUE;
        int right=Integer.MIN_VALUE;
        int top=Integer.MIN_VALUE;
        int bottom=Integer.MAX_VALUE;
        int n=rectangles.length;
        
        Set set=new HashSet<>();
        int sumArea=0;
        
        for(int i=0;i

 

你可能感兴趣的:(JAVA程序设计:完美矩形(LeetCode:391))