1.数据类型的检查可以用 isinstance() 函数来实现
def my_abs(x):
if not isinstance(x, (int, float)):
raise TypeError('bad operand type')
if x >= 0:
return x
else:
return -x
2.函数可以返回多个值,但这只是一个假象,Python返回的任然是一个单一值。
原来返回值是一个tuple!但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。
import math
def move(x, y, step, angle=0):
nx = x + step * math.cos(angle)
ny = y - step * math.sin(angle)
return nx, ny
>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print(x, y)
151.96152422706632 70.0
>>> r = move(100, 100, 60, math.pi / 6)
>>> print(r)
(151.96152422706632, 70.0)
3.默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用enroll(‘Adam’, ‘M’, city=‘Tianjin’),意思是,city参数用传进去的值,其他默认参数继续使用默认值。
def enroll(name, gender, age=6, city='Beijing'):
print('name:', name)
print('gender:', gender)
print('age:', age)
print('city:', city)
4.定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*号。
def calc(*numbers):
sum = 0
for n in numbers:
sum = sum + n * n
return sup
5.关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。
def person(name, age, **kw):
print('name:', name, 'age:', age, 'other:', kw)
>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}
6.命名关键字参数:如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city和job作为关键字参数。这 种方式定义的函数如下:
def person(name, age, *, city, job):
print(name, age, city, job)
和关键字参数**kw不同,命名关键字参数需要一个特殊分隔符*,*后面的参数被视为命名关键字参数。调用方式如下:
>>> person('Jack', 24, city='Beijing', job='Engineer')
Jack 24 Beijing Engineer
7.对于任意函数,都可以通过类似func(*args, **kw)的形式调用它,无论它的参数是如何定义的。
1.在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。
1.切片:Python提供了切片(Slice)操作符,可以取前N个元素,也就是索引为0-(N-1)的元素,
>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]
>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
2.由于字符串也是可迭代对象,因此,也可以作用于for循环:
>>> for ch in 'ABC':
... print(ch)
...
A
B
C
3.如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C
上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print(x, y)
...
1 1
2 4
3 9
4.列表生成式:生成[1x1, 2x2, 3x3, …, 10x10]可用 [x * x for x in range(1, 11)]
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
5.生成器:在Python中,这种一边循环一边计算的机制,称为生成器:generator。
1).第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:
g = (x * x for x in range(10))
next(g)
上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:
2).如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:
6.迭代器:可以使用isinstance()判断一个对象是否是Iterable对象:
生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。把list、dict、str 等Iterable变成Iterator可以使用iter()函数:
你可能会问,为什么list、dict、str等数据类型不是Iterator?
这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
7.高阶函数:函数本身也可以赋值给变量,即:变量可以指向函数。
8.map/reduce:Python内建了map()和reduce()函数。map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
再看reduce的用法。reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
9.filter:filter()函数用于过滤序列。
和map()类似,filter()也接收一个函数和一个序列。和map()不同的时,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。
10.sorted:
sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:
>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]
11.匿名函数:关键字lambda表示匿名函数,冒号前面的x表示函数参数。
list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
12.函数对象有一个__name__属性,可以拿到函数的名字:
13.装饰器:在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。
wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。
如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:
def log(text):
def decorator(func):
def wrapper(*args, **kw):
print('%s %s():' % (text, func.__name__))
return func(*args, **kw)
return wrapper
return decorator
14.偏函数:functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:
>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85
15.在Python中,所有数据类型都可以视为对象,当然也可以自定义对象。自定义的对象数据类型就是面向对象中的类(Class)的概念。
16.类CLASS :class后面紧接着是类名,即Student,类名通常是大写开头的单词,紧接着是(object),表示该类是从哪个类继承下来的,继承的概念我们后面再讲,通常,如果没有合适的继承类,就使用object类,这是所有类最终都会继承的类。
class Student(object):
pass
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
注意到__init__方法的第一个参数永远是self,表示创建的实例本身,
如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,所以,我们把Student类改一改:
class Student(object):
def __init__(self, name, score):
self.__name = name
self.__score = score
def print_score(self):
print('%s: %s' % (self.__name, self.__score))
需要注意的是,在Python中,变量名类似__xxx__的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name__、__score__这样的变量名。
有些时候,你会看到以一个下划线开头的实例变量名,比如_name,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。
双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问__name是因为Python解释器对外把__name变量改成了_Student__name,所以,仍然可以通过_Student__name来访问__name变量:
>>> bart._Student__name
'Bart Simpson'
但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name改成不同的变量名。
总的来说就是,Python本身没有任何机制阻止你干坏事,一切全靠自觉。
17.使用type()
首先,我们来判断对象类型,使用type()函数:
isinstance()判断的是一个对象是否是该类型本身,或者位于该类型的父继承链上。
18.使用dir()
如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:
19.在编写程序的时候,千万不要把实例属性和类属性使用相同的名字,因为相同名称的实例属性将屏蔽掉类属性,但是当你删除实例属性后,再使用相同的名称,访问到的将是类属性。
20.同步和异步的区别就在于是否等待IO执行的结果。好比你去麦当劳点餐,你说“来个汉堡”,服务员告诉你,对不起,汉堡要现做,需要等5分钟,于是你站在收银台前面等了5分钟,拿到汉堡再去逛商场,这是同步IO。
你说“来个汉堡”,服务员告诉你,汉堡需要等5分钟,你可以先去逛商场,等做好了,我们再通知你,这样你可以立刻去干别的事情(逛商场),这是异步IO。
读文件
要以读文件的模式打开一个文件对象,使用Python内置的open()函数,传入文件名和标示符:
>>> f = open('/Users/michael/test.txt', 'r')
调用read()方法可以一次读取文件的全部内容,Python把内容读到内存,用一个str对象表示:
>>> f.read()
最后一步是调用close()方法关闭文件。
try:
f = open('/path/to/file', 'r')
print(f.read())
finally:
if f:
f.close()
但是每次都这么写实在太繁琐,所以,Python引入了with语句来自动帮我们调用close()方法:
with open('/path/to/file', 'r') as f:
print(f.read())
这和前面的try … finally是一样的,但是代码更佳简洁,并且不必调用f.close()方法。
写文件
写文件和读文件是一样的,唯一区别是调用open()函数时,传入标识符’w’或者’wb’表示写文本文件或写二进制文件:
>>> f = open('/Users/michael/test.txt', 'w')
>>> f.write('Hello, world!')
>>> f.close()
22.StringIO顾名思义就是在内存中读写str。
要把str写入StringIO,我们需要先创建一个StringIO,然后,像文件一样写入即可:
>>> from io import StringIO
>>> f = StringIO()
>>> f.write('hello')
5
>>> f.write(' ')
1
>>> f.write('world!')
6
>>> print(f.getvalue())
hello world!
23.操作文件和目录
操作文件和目录的函数一部分放在os模块中,一部分放在os.path模块中,这一点要注意一下。查看、创建和删除目录可以这么调用:
# 查看当前目录的绝对路径:
>>> os.path.abspath('.')
'/Users/michael'
# 在某个目录下创建一个新目录,首先把新目录的完整路径表示出来:
>>> os.path.join('/Users/michael', 'testdir')
'/Users/michael/testdir'
# 然后创建一个目录:
>>> os.mkdir('/Users/michael/testdir')
# 删掉一个目录:
>>> os.rmdir('/Users/michael/testdir')
24.我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。
Python提供了pickle模块来实现序列化。
首先,我们尝试把一个对象序列化并写入文件:
>>> import pickle
>>> d = dict(name='Bob', age=20, score=88)
>>> pickle.dumps(d)
b'\x80\x03}q\x00(X\x03\x00\x00\x00ageq\x01K\x14X\x05\x00\x00\x00scoreq\x02KXX\x04\x00\x00\x00nameq\x03X\x03\x00\x00\x00Bobq\x04u.'
pickle.dumps()方法把任意对象序列化成一个bytes,然后,就可以把这个bytes写入文件。或者用另一个方法pickle.dump()直接把对象序列化后写入一个file-like Object:
>>> f = open('dump.txt', 'wb')
>>> pickle.dump(d, f)
>>> f.close()
当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes,然后用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:
>>> f = open('dump.txt', 'rb')
>>> d = pickle.load(f)
>>> f.close()
>>> d
{'age': 20, 'score': 88, 'name': 'Bob'}
25.JSON: 如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,JSON表示出来就是一个字符串,可以被所有语言读取
Python内置的json模块提供了非常完善的Python对象到JSON格式的转换。我们先看看如何把Python对象变成一个JSON:
>>> import json
>>> d = dict(name='Bob', age=20, score=88)
>>> json.dumps(d)
'{"age": 20, "score": 88, "name": "Bob"}'
def student2dict(std):
return {
'name': std.name,
'age': std.age,
'score': std.score
}
这样,Student实例首先被student2dict()函数转换成dict,然后再被顺利序列化为JSON:
>>> print(json.dumps(s, default=student2dict))
{"age": 20, "name": "Bob", "score": 88}
不过,下次如果遇到一个Teacher类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class的实例变为dict:
print(json.dumps(s, default=lambda obj: obj.__dict__))
因为通常class的实例都有一个__dict__属性,它就是一个dict,用来存储实例变量。也有少数例外,比如定义了__slots__的class。
同样的道理,如果我们要把JSON反序列化为一个Student对象实例,loads()方法首先转换出一个dict对象,然后,我们传入的object_hook函数负责把dict转换为Student实例:
def dict2student(d):
return Student(d['name'], d['age'], d['score'])
26.Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性:
class Student(object):
__slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
对于追求完美的Python程序员来说,这是必须要做到的!
还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:
class Student(object):
@property
def score(self):
return self._score
@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:
>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!
在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich继承自Bird。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich除了继承自Bird外,再同时继承Runnable。这种设计通常称之为MixIn。
为了更好地看出继承关系,我们把Runnable和Flyable改为RunnableMixIn和FlyableMixIn。类似的,你还可以定义出肉食动物CarnivorousMixIn和植食动物HerbivoresMixIn,让某个动物同时拥有好几个MixIn:
class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
pass
MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。
__iter__
如果一个类想被用于for … in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。
我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:
class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b
def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己
def __next__(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration();
return self.a # 返回下一个值
__getitem__
Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:
>>> Fib()[5]
Traceback (most recent call last):
File "", line 1, in
TypeError: 'Fib' object does not support indexing
要表现得像list那样按照下标取出元素,需要实现__getitem__()方法:
class Fib(object):
def __getitem__(self, n):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a