Let是更新的var,但有新语法,比如块级作用域,在作用域内没有变量提升
Const常量,不可变,单指向一个对象是涉及到按对象应用还是可以改变,一般大写
不用_this概念 this是定义时的对象
简化回调函数 一个参数省略括号,一句话省略return
()=>{}
解决异步回调
Let promise =new Promise(function(resolve,reject){
//resolve 成功调用
//reject 失败调用
});
Promise.then(res=>{
}),then=>{
}
方法then catch finally all race resolve reject try
严格模式
ES6中加了类的概念,类似Java 但实际上是函数 需要new 但如果像函数调用会报错
首字母大写
没有变量提升
This比原生轻松
继承 extends
子类必须要执行父类的构造函数Super()
覆盖之后执行最新的,可以先Super,再加入新的东西
静态方法:加static 不会被实例继承,直接通过类调用 静态属性
私有方法,私有属性 #
采用严格模式
变量必须声明后再使用
函数的参数不能有同名属性,否则报错
不能使用with语句
不能对只读属性赋值,否则报错
不能使用前缀 0 表示八进制数,否则报错
不能删除不可删除的属性,否则报错
不能删除变量delete prop,会报错,只能删除属性delete global[prop]
eval不会在它的外层作用域引入变量
eval和arguments不能被重新赋值
arguments不会自动反映函数参数的变化
不能使用arguments.callee
不能使用arguments.caller
禁止this指向全局对象
不能使用fn.caller和fn.arguments获取函数调用的堆栈
增加了保留字(比如protected、static和interface)
Export {名称 (变量,函数,类) as 重命名} 规定模块对外接口
|default 时可以不加{} 无论import还是export
import {* 名称 as xxx} from '模块' 相对和绝对路径都可以
配合使用
Import的内容不可以改变
export { foo, bar } from 'my_module';
Import()动态加载
结合reflect使用
函数未传参时使用默认值,
传进来的参数默认已经定义,不可以在内部进行定义
反引号+${}
实现多行字符串
可以直接对象赋值包括数组
const {x,y} = this,.props;
独一无二的(原始类型不可以new)
属性Description
方法.for重用 keyFor 返回key值
函数名之前加*
解决异步,深度嵌套 async(ES2017)
生成器
配合yield(暂停标志)使用 next()(下一个内部状态)
function * gen(){
yield 'welcome';
yield 'to';
return '';
}
let g1=gen();
Console.log(g1.next());
Yield * function()执行另一个内部generator函数
Promise
Geneator
Async Await
Async function fn(){
Let f1= await readFile(‘data/a.txt’);
Condole.log(f1.toString());
Let f2= await readFile(‘data/b.txt’);
Condole.log(f2.toString());
Let f3= await readFile(‘data/c.txt’);
Condole.log(f3.toString());
var p = new Promise(function(resolve, reject){
console.log("create a promise");
resolve("success");
});
console.log("after new Promise");
p.then(function(value){
console.log(value);
});
控制台输出:
"create a promise""after new Promise""success"
Promise对象表示未来某个将要发生的事件,但在创建(new)Promise时,作为Promise参数传入的函数是会被立即执行的,只是其中执行的代码可以是异步代码。有些同学会认为,当Promise对象调用then方法时,Promise接收的函数才会执行,这是错误的。因此,代码中"create a promise"先于"after new Promise"输出。
var p1 = new Promise(function(resolve,reject){
resolve(1);
});
var p2 = new Promise(function(resolve,reject){
setTimeout(function(){
resolve(2);
}, 500);
});
var p3 = new Promise(function(resolve,reject){
setTimeout(function(){
reject(3);
}, 500);
});
console.log(p1);
console.log(p2);
console.log(p3);
setTimeout(function(){
console.log(p2);
}, 1000);
setTimeout(function(){
console.log(p3);
}, 1000);
p1.then(function(value){
console.log(value);
});
p2.then(function(value){
console.log(value);
});
p3.catch(function(err){
console.log(err);
});
控制台输出:
Promise {[[PromiseStatus]]: "resolved", [[PromiseValue]]: 1}
Promise {[[PromiseStatus]]: "pending", [[PromiseValue]]: undefined}
Promise {[[PromiseStatus]]: "pending", [[PromiseValue]]: undefined}
Promise {[[PromiseStatus]]: "resolved", [[PromiseValue]]: 2}
Promise {[[PromiseStatus]]: "rejected", [[PromiseValue]]: 3}
Promise的内部实现是一个状态机。Promise有三种状态:pending,resolved,rejected。当Promise刚创建完成时,处于pending状态;当Promise中的函数参数执行了resolve后,Promise由pending状态变成resolved状态;如果在Promise的函数参数中执行的不是resolve方法,而是reject方法,那么Promise会由pending状态变成rejected状态。
p2、p3刚创建完成时,控制台输出的这两台Promise都处于pending状态,但为什么p1是resolved状态呢? 这是因为p1 的函数参数中执行的是一段同步代码,Promise刚创建完成,resolve方法就已经被调用了,因而紧跟着的输出显示p1是resolved状态。我们通过两个setTimeout函数,延迟1s后再次输出p2、p3的状态,此时p2、p3已经执行完成,状态分别变成resolved和rejected。
var p1 = new Promise(function(resolve, reject){
resolve("success1");
resolve("success2");
});
var p2 = new Promise(function(resolve, reject){
resolve("success");
reject("reject");
});
p1.then(function(value){
console.log(value);
});
p2.then(function(value){
console.log(value);
});
控制台输出:
"success1""success"
Promise状态的一旦变成resolved或rejected时,Promise的状态和值就固定下来了,不论你后续再怎么调用resolve或reject方法,都不能改变它的状态和值。因此,p1中resolve("success2")并不能将p1的值更改为success2,p2中reject("reject")也不能将p2的状态由resolved改变为rejected.
var p = new Promise(function(resolve, reject){
resolve(1);
});
p.then(function(value){ //第一个then
console.log(value);
return value*2;
}).then(function(value){ //第二个then
console.log(value);
}).then(function(value){ //第三个then
console.log(value);
return Promise.resolve('resolve');
}).then(function(value){ //第四个then
console.log(value);
return Promise.reject('reject');
}).then(function(value){ //第五个then
console.log('resolve: '+ value);
}, function(err){
console.log('reject: ' + err);
})
控制台输出:
1
2
undefined"resolve""reject: reject"
Promise对象的then方法返回一个新的Promise对象,因此可以通过链式调用then方法。then方法接收两个函数作为参数,第一个参数是Promise执行成功时的回调,第二个参数是Promise执行失败时的回调。两个函数只会有一个被调用,函数的返回值将被用作创建then返回的Promise对象。这两个参数的返回值可以是以下三种情况中的一种:
根据以上分析,代码中第一个then会返回一个值为2(1*2),状态为resolved的Promise对象,于是第二个then输出的值是2。第二个then中没有返回值,因此将返回默认的undefined,于是在第三个then中输出undefined。第三个then和第四个then中分别返回一个状态是resolved的Promise和一个状态是rejected的Promise,依次由第四个then中成功的回调函数和第五个then中失败的回调函数处理。
var p = new Promise(function(resolve, reject){
resolve("success");
});
p.then(function(value){
console.log(value);
});
console.log("which one is called first ?");
控制台输出:
"which one is called first ?""success"
Promise接收的函数参数是同步执行的,但then方法中的回调函数执行则是异步的,因此,"success"会在后面输出。
var p1 = new Promise( function(resolve,reject){
foo.bar();
resolve( 1 );
});
p1.then(
function(value){
console.log('p1 then value: ' + value);
},
function(err){
console.log('p1 then err: ' + err);
}
).then(
function(value){
console.log('p1 then then value: '+value);
},
function(err){
console.log('p1 then then err: ' + err);
}
);
var p2 = new Promise(function(resolve,reject){
resolve( 2 );
});
p2.then(
function(value){
console.log('p2 then value: ' + value);
foo.bar();
},
function(err){
console.log('p2 then err: ' + err);
}
).then(
function(value){
console.log('p2 then then value: ' + value);
},
function(err){
console.log('p2 then then err: ' + err);
return 1;
}
).then(
function(value){
console.log('p2 then then then value: ' + value);
},
function(err){
console.log('p2 then then then err: ' + err);
}
);
控制台输出:
p1 then err: ReferenceError: foo is not defined
p2 then value: 2
p1 then then value: undefined
p2 then then err: ReferenceError: foo is not defined
p2 then then then value: 1
Promise中的异常由then参数中第二个回调函数(Promise执行失败的回调)处理,异常信息将作为Promise的值。异常一旦得到处理,then返回的后续Promise对象将恢复正常,并会被Promise执行成功的回调函数处理。另外,需要注意p1、p2 多级then的回调函数是交替执行的 ,这正是由Promise then回调的异步性决定的。
var p1 = Promise.resolve( 1 );
var p2 = Promise.resolve( p1 );
var p3 = new Promise(function(resolve, reject){
resolve(1);
});
var p4 = new Promise(function(resolve, reject){
resolve(p1);
});
console.log(p1 === p2);
console.log(p1 === p3);
console.log(p1 === p4);
console.log(p3 === p4);
p4.then(function(value){
console.log('p4=' + value);
});
p2.then(function(value){
console.log('p2=' + value);
})
p1.then(function(value){
console.log('p1=' + value);
})
控制台输出:
truefalsefalsefalse
p2=1
p1=1
p4=1
Promise.resolve(...)可以接收一个值或者是一个Promise对象作为参数。当参数是普通值时,它返回一个resolved状态的Promise对象,对象的值就是这个参数;当参数是一个Promise对象时,它直接返回这个Promise参数。因此,p1 === p2。但通过new的方式创建的Promise对象都是一个新的对象,因此后面的三个比较结果都是false。另外,为什么p4的then最先调用,但在控制台上是最后输出结果的呢?因为p4的resolve中接收的参数是一个Promise对象p1,resolve会对p1”拆箱“,获取p1的状态和值,但这个过程是异步的,可参考下一节。
var p1 = new Promise(function(resolve, reject){
resolve(Promise.resolve('resolve'));
});
var p2 = new Promise(function(resolve, reject){
resolve(Promise.reject('reject'));
});
var p3 = new Promise(function(resolve, reject){
reject(Promise.resolve('resolve'));
});
p1.then(
function fulfilled(value){
console.log('fulfilled: ' + value);
},
function rejected(err)
console.log('rejected: ' + err);
}
);
p2.then(
function fulfilled(value){
console.log('fulfilled: ' + value);
},
function rejected(err){
console.log('rejected: ' + err);
}
);
p3.then(
function fulfilled(value){
console.log('fulfilled: ' + value);
},
function rejected(err){
console.log('rejected: ' + err);
}
);
控制台输出:
p3 rejected: [object Promise]
p1 fulfilled: resolve
p2 rejected: reject
Promise回调函数中的第一个参数resolve,会对Promise执行"拆箱"动作。即当resolve的参数是一个Promise对象时,resolve会"拆箱"获取这个Promise对象的状态和值,但这个过程是异步的。p1"拆箱"后,获取到Promise对象的状态是resolved,因此fulfilled回调被执行;p2"拆箱"后,获取到Promise对象的状态是rejected,因此rejected回调被执行。但Promise回调函数中的第二个参数reject不具备”拆箱“的能力,reject的参数会直接传递给then方法中的rejected回调。因此,即使p3 reject接收了一个resolved状态的Promise,then方法中被调用的依然是rejected,并且参数就是reject接收到的Promise对象。
类似于数组,有序,不能有重复的值,但不报错
Let set = new Set();
方法: add delete has clear size foreach keys value(let item of krys) entries
key和value是同一个值
weakSet 存储Json 只能储存对象 弱引用(垃圾回收不考虑)
Set(key,value) get(key) has(key) delete (key) clear
Map的键是对象引用,绑定内存
const myMap = new Map()
.set(true,7)
.set({foo:3}, [‘abc’]);
new Map([
[true, 7],
[{foo: 3}, ['abc']]
])
function strMapToObj(strMap) {
let obj = Object.create(null);
for (let [k,v] of strMap) {
obj[k] = v;
}
return obj;
}
const myMap = new Map()
.set('yes', true)
.set('no', false);
strMapToObj(myMap)
function objToStrMap(obj) {
let strMap = new Map();
for (let k of Object.keys(obj)) {
strMap.set(k, obj[k]);
}
return strMap;
}
objToStrMap({yes: true, no: false})
转为对象JSON
function strMapToJson(strMap) {
return JSON.stringify(strMapToObj(strMap));
}
let myMap = new Map().set('yes', true).set('no', false);
strMapToJson(myMap)
转为数组Map
function mapToArrayJson(map) {
return JSON.stringify([...map]);
}
let myMap = new Map().set(true, 7).set({foo: 3}, ['abc']);
mapToArrayJson(myMap)
function jsonToStrMap(jsonStr) {
return objToStrMap(JSON.parse(jsonStr));
}
jsonToStrMap('{"yes": true, "no": false}')
整个 JSON 就是一个数组,且每个数组成员本身,又是一个有两个成员的数组。这时,它可以一一对应地转为 Map。,整个 JSON 就是一个数组,且每个数组成员本身,又是一个有两个成员的数组。这时,它可以一一对应地转为 Map。
function jsonToMap(jsonStr) {
return new Map(JSON.parse(jsonStr));
}
jsonToMap('[[true,7],[{"foo":3},["abc"]]]')
键只能是对象 弱引用不计入垃圾回收