Hdu 5452 Minimum Cut (图论问题) 2015 ACM-ICPC沈阳网赛


 Hdu 5452 Minimum Cut (图论问题) 2015 ACM-ICPC沈阳网赛

 

Minimum Cut

Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)
Total Submission(s): 1314    Accepted Submission(s): 608


Problem Description
Given a simple unweighted graph  G (an undirected graph containing no loops nor multiple edges) with  n nodes and  m edges. Let  T be a spanning tree of  G.
We say that a cut in  G respects  T if it cuts just one edges of  T.

Since love needs good faith and hypocrisy return for only grief, you should find the minimum cut of graph  G respecting the given spanning tree  T.
 

Input
The input contains several test cases.
The first line of the input is a single integer  t (1t5) which is the number of test cases.
Then  t test cases follow.

Each test case contains several lines.
The first line contains two integers  n (2n20000) and  m (n1m200000).
The following  n1 lines describe the spanning tree  T and each of them contains two integers  u and  v corresponding to an edge.
Next  mn+1 lines describe the undirected graph  G and each of them contains two integers  u and  v corresponding to an edge which is not in the spanning tree  T.
 

Output
For each test case, you should output the minimum cut of graph  G respecting the given spanning tree  T.
 

Sample Input
 
   
1 4 5 1 2 2 3 3 4 1 3 1 4
 

Sample Output
 
   
Case #1: 2
 

Source
2015 ACM/ICPC Asia Regional Shenyang Online
 
题意:给一个无权有向图G,图上给一颗生成树T,去掉最少的边(必须有一条边在树上)使图不再连通。
分析:生成树T性质,包含图上所有的结点,n即结点数。而选择生成树的叶子结点的边切割不会比非叶子结点更差,因为叶子结点没有子树,所以算法十分明显,
       枚举所有的叶子结点的非生成树边的入度(等于总度数),找到最小的再加一即是答案(必须有一条边在树上)。

 

/*	
	题意:给一个无权有向图G,图上给一颗生成树T,去掉最少的边(必须有一条边在树上)使图不再连通。
	分析:生成树T性质,包含图上所有的结点,n即结点数。而选择生成树的叶子结点的边切割不会比非叶子结点更差,因为叶子结点没有子树,所以算法十分明显,
枚举所有的叶子结点的非生成树边的入度(等于总度数),找到最小的再加一即是答案(必须有一条边在树上)。
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define INF 1<<29
#define eps 1e-9
#define LD long double
#define LL long long
const int maxn = 200000 + 10;
using namespace std;
int rdegree[maxn], vdegree[maxn];
int main()
{
#ifdef LOCAL
	freopen("data.txt", "r", stdin);
#endif
	int T;
	scanf("%d",&T);
	for (int kase = 1; kase <= T; ++kase)
	{
		memset(rdegree, 0, sizeof(rdegree));
		memset(vdegree, 0, sizeof(vdegree));
		int n, m,u, v;
		scanf("%d%d", &n,&m);
		for (int i = 1; i < n; i++)
		{
			
			scanf("%d%d", &u, &v);
			rdegree[u]++;
			rdegree[v]++;
		}
		for (int i = n; i <= m; i++){
			scanf("%d%d", &u, &v);
			vdegree[u]++;
			vdegree[v]++;
		}
		int MinCut = 1 << 30;
		for (int i = 1; i <= n; i++){
			if (rdegree[i]<2){
				MinCut = min(MinCut, vdegree[i]);
			}
		}
		printf("Case #%d: %d\n", kase, MinCut + 1);
	}	
	return 0;
}



你可能感兴趣的:(HDU,图论)