求解区间最值 - RMQ - ST 算法介绍

解析


ST 算法是 RMQ(Range Minimum/Maximum Query)中一个很经典的算法,它天生用来求得一个区间的最值,但却不能维护最值,也就是说,过程中不能改变区间中的某个元素的值。O(nlogn) 的预处理和 O(1) 的查询对于需要大量询问的场景是非常适用的。接下来我们就来详细了解下 ST 算法的处理过程。

比如有如下长度为 10 的数组:

1 3 2 4 9 5 6 7 8 0  

我们要查询 [1, 7] 之间的最大值,如果采用朴素的线性查找,复杂度O(n),而 ST 算法却只需要 O(1)的时间复杂度,因为 ST 算法预处理了一个 dp 数组。

我们用 dp[i][j] 表示从 i 开始的 2^j 个数的最值,表示 dp[i][j] “管辖” index=i 开始的 2^j 个数字,那么很显然,任何一段区间都能被两个 dp 元素管辖到。比如上面说的 [1, 7],就能被dp[1][2] 和 dp[4][2]管辖到,而 max(dp[1][2], dp[4][2])也就是[1, 7] 的最值了。

如何得出是 dp[1][2] 和 dp[4][2] 这两个元素?很简单,让dp[1][n](2^n <= 区间个数)中的n尽可能大就得到了第一个元素,从而可以推得第二个元素,两个元素的管辖范围大小是一样的。

这样我们只需预处理一个 dp 数组就可以了,而这个预处理是一个动态规划的过程,转移方程为:

dp[i][j] = max(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);

而 dp 数组的预处理和 RMQ 的求解过程正好是个逆过程。

实战


POJ 上有一道 ST 算法的模板题 Balanced Lineup,只需预处理两个数组即可,一个表示最大值,另一个表示最小值。

完整代码:

#include
#include
#include
#include
using namespace std;
#define N 50005
int maxn[N][32], minn[N][32]; 
int a[N];

void ST(int n) {
  for (int i = 1; i <= n; i++)
    maxn[i][0] = minn[i][0] = a[i];

  int k = log(n * 1.0) / log(2.0);

  for (int j = 1; j <= k; j++)
    for (int i = 1; i <= n; i++) {
    if (i + (1 << j) - 1 > n) break;
      maxn[i][j] = max(maxn[i][j - 1], maxn[i + (1 << (j - 1))][j - 1]);
      minn[i][j] = min(minn[i][j - 1], minn[i + (1 << (j - 1))][j - 1]);
    }
}

int getAns(int x, int y) {
  int k = log(y - x + 1.0) / log(2.0);
  return max(maxn[x][k], maxn[y + 1 - (1 << k)][k]) - min(minn[x][k], minn[y + 1 - (1 << k)][k]);
}

int main() {
  int n, cas;
  scanf("%d%d", &n, &cas);
  for (int i = 1; i <= n; i++)
    scanf("%d", &a[i]);

  ST(n);

  while (cas--) {
    int x, y;
    scanf("%d%d", &x, &y);
    printf("%d\n", getAns(x, y));
  }

  return 0;
}

Javascript模板:

var G = {
  dp: [], // dp[i][j] 表示从 index=i 开始的连续 2^j 个元素中的最值

  init: function(a) {
    var n = a.length;

    for (var i = 0; i < n; i++)
      G.dp[i] = [], G.dp[i][0] = a[i]; 

    var k = ~~(Math.log(n) / Math.log(2));

    for (var j = 1; j <= k; j++)
      for (var i = 0; i < n; i++) {
        if (i + (1 << j) - 1 >= n) break;
        // 如果求区间最小值,改为 Math.min() 即可
        G.dp[i][j] = Math.max(G.dp[i][j - 1], G.dp[i + (1 << (j - 1))][j - 1]); 
      }
  },

  getAns: function(x, y) {
    var k = ~~(Math.log(y - x + 1) / Math.log(2));
    // 如果求区间最小值,改为 Math.min() 即可
    return Math.max(G.dp[x][k], G.dp[y + 1 - (1 << k)][k]);
  }
};


var a = [1, 3, 2, 4, 8, 7, 6, 5, 9, 0]  // 需要求 RMQ 的数组

G.init(a);


// test cases
for (var i = 0; i < 10; i++)
  for (var j = i + 1; j < 10; j++) {
    var tmp = a.slice(i, j + 1)
      , normalAns = Math.max.apply(null, tmp)
      , stAns = G.getAns(i, j);

    if (normalAns !== stAns)
      console.log('Algorithm went wrong!');
  }

你可能感兴趣的:(求解区间最值 - RMQ - ST 算法介绍)