基于ROS完成寻迹运动

安装opencv功能包:

$ sudo apt-get install ros-indigo-version-opencv libopencv-dev python-opencv

 检测指示线:

#!/usr/bin/env python
# coding=utf-8

import rospy
from sensor_msgs.msg import Image
import cv2, cv_bridge
import numpy
from geometry_msgs.msg import Twist


class Follower:
    def __init__(self):
        self.bridge = cv_bridge.CvBridge()
        cv2.namedWindow("window", 1)
        # 订阅usb摄像头
        self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.image_callback)
        # self.image_sub = rospy.Subscriber("cv_bridge_image", Image, self.image_callback)
        # 订阅深度相机
        # self.image_sub = rospy.Subscriber("/camera/rgb/image_raw", Image, self.image_callback)
        # self.image_sub = rospy.Subscriber("/camera/depth/image_raw", Image, self.image_callback)
     self.cmd_vel_pub = rospy.Publisher("cmd_vel", Twist, queue_size=1) self.twist = Twist() def image_callback(self, msg): image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8') # hsv将RGB图像分解成色调H,饱和度S,明度V hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 颜色的范围 # 第二个参数:lower指的是图像中低于这个lower的值,图像值变为0 # 第三个参数:upper指的是图像中高于这个upper的值,图像值变为0 # 而在lower~upper之间的值变成255 lower_black = numpy.array([0, 0, 0]) upper_black = numpy.array([50, 50, 50]) mask = cv2.inRange(hsv, lower_black, upper_black) masked = cv2.bitwise_and(image, image, mask=mask) # 在图像某处绘制一个指示,因为只考虑20行宽的图像,所以使用numpy切片将以外的空间区域清空 h, w, d = image.shape search_top = 3*h/4 search_bot = search_top + 20 mask[0:search_top, 0:w] = 0 mask[search_bot:h, 0:w] = 0 # 计算mask图像的重心,即几何中心 M = cv2.moments(mask) if M['m00'] > 0: cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) cv2.circle(image, (cx, cy), 20, (0, 0, 255), -1)          if not cv2.circle: self.twist.linear.x = -0.5 self.twist.angular.z = 0.1 # 计算图像中心线和目标指示线中心的距离 erro = cx - w/2 self.twist.linear.x = 0.5 # self.twist.angular.z = -float(erro)/100 self.twist.angular.z = 0 self.cmd_vel_pub.publish(self.twist) cv2.imshow("window", image) cv2.waitKey(3) rospy.init_node("opencv") follower = Follower() rospy.spin()

  使用opencv的cvtColor()函数将RGB图像转换成HSV图像,使用numpy在HSV颜色空间中创建一个所需的色调范围,然后用inRange()函数根据色调范围生成一个二值图像。

  跟踪指示线的策略:只考虑图像1/3高处的20行宽的部分,在检测的图像中心绘制一个圆点用来标记。

 

 

转载于:https://www.cnblogs.com/dingyc/p/10677045.html

你可能感兴趣的:(基于ROS完成寻迹运动)