ont-hot向量表示单词简单,但是不能表现出词语词之间的相似度
word2vec词嵌入可以解决上面的问题。word2vec将词表示成一个定长的向量,然后通过在语料库中的预训练使得这些向量能够学习到词与词之间的相似关系和类比关系。
word2vec有两种基本假设,一种是基于CBOW,另一种是基于Skip-gram。如果是用一个词语作为输入,来预测它周围的上下文,那这个模型叫做Skip-gram 模型而如果是拿一个词语的上下文作为输入,来预测这个词语本身,则是CBOW模型。
下图是
下图是Skip-gram模型
简单来说,word2vec是用一个一层的神经网络把one-hot形式的稀疏词向量映射称为一个n维(n一般为几百)的稠密向量的过程。为了加快模型训练速度,其中的tricks包括Hierarchical softmax,negative sampling, Huffman Tree等
这里我们使用经典的 PTB 语料库进行训练。PTB (Penn Tree Bank) 是一个常用的小型语料库,它采样自《华尔街日报》的文章,包括训练集、验证集和测试集。我们将在PTB训练集上训练词嵌入模型。
import collections
import math
import random
import sys
import time
import os
import numpy as np
import torch
from torch import nn
import torch.utils.data as Data
with open('ptb.train.txt', 'r') as f:
lines = f.readlines() # 该数据集中句子以换行符为分割
raw_dataset = [st.split() for st in lines] # st是sentence的缩写,单词以空格为分割
print('# sentences: %d' % len(raw_dataset))
# 对于数据集的前3个句子,打印每个句子的词数和前5个词
# 句尾符为 '' ,生僻词全用 '' 表示,数字则被替换成了 'N'
for st in raw_dataset[:3]:
print('# tokens:', len(st), st[:5])
counter = collections.Counter([tk for st in raw_dataset for tk in st]) # tk是token的缩写
counter = dict(filter(lambda x: x[1] >= 5, counter.items())) # 只保留在数据集中至少出现5次的词
idx_to_token = [tk for tk, _ in counter.items()]
token_to_idx = {tk: idx for idx, tk in enumerate(idx_to_token)}
dataset = [[token_to_idx[tk] for tk in st if tk in token_to_idx]
for st in raw_dataset] # raw_dataset中的单词在这一步被转换为对应的idx
num_tokens = sum([len(st) for st in dataset])
#二次采样操作。越高频率的词一般意义不大,根据公式高频词越容易被过滤。准确来说,应该是降频操作。既不希望超高频被完全过滤,又希望减少高频词对训练的影响。
def discard(idx):
'''
@params:
idx: 单词的下标
@return: True/False 表示是否丢弃该单词
'''
return random.uniform(0, 1) < 1 - math.sqrt(
1e-4 / counter[idx_to_token[idx]] * num_tokens)
subsampled_dataset = [[tk for tk in st if not discard(tk)] for st in dataset]
print('# tokens: %d' % sum([len(st) for st in subsampled_dataset]))
def compare_counts(token):
#展示了discard操作之后,剩下词的数量
return '# %s: before=%d, after=%d' % (token, sum(
[st.count(token_to_idx[token]) for st in dataset]), sum(
[st.count(token_to_idx[token]) for st in subsampled_dataset]))
print(compare_counts('the'))
print(compare_counts('join'))
def get_centers_and_contexts(dataset, max_window_size):
'''
@params:
dataset: 数据集为句子的集合,每个句子则为单词的集合,此时单词已经被转换为相应数字下标
max_window_size: 背景词的词窗大小的最大值
@return:
centers: 中心词的集合
contexts: 背景词窗的集合,与中心词对应,每个背景词窗则为背景词的集合
'''
centers, contexts = [], []
for st in dataset:
if len(st) < 2: # 每个句子至少要有2个词才可能组成一对“中心词-背景词”
continue
centers += st
for center_i in range(len(st)):
window_size = random.randint(1, max_window_size) # 随机选取背景词窗大小
indices = list(range(max(0, center_i - window_size),
min(len(st), center_i + 1 + window_size)))
indices.remove(center_i) # 将中心词排除在背景词之外
contexts.append([st[idx] for idx in indices])
return centers, contexts
all_centers, all_contexts = get_centers_and_contexts(subsampled_dataset, 5)
tiny_dataset = [list(range(7)), list(range(7, 10))]
print('dataset', tiny_dataset)
for center, context in zip(*get_centers_and_contexts(tiny_dataset, 2)):
print('center', center, 'has contexts', context)
#skip_gram向前计算
def skip_gram(center, contexts_and_negatives, embed_v, embed_u):
'''
@params:
center: 中心词下标,形状为 (n, 1) 的整数张量
contexts_and_negatives: 背景词和噪音词下标,形状为 (n, m) 的整数张量
embed_v: 中心词的 embedding 层
embed_u: 背景词的 embedding 层
@return:
pred: 中心词与背景词(或噪音词)的内积,之后可用于计算概率 p(w_o|w_c)
'''
v = embed_v(center) # shape of (n, 1, d)
u = embed_u(contexts_and_negatives) # shape of (n, m, d)
pred = torch.bmm(v, u.permute(0, 2, 1)) # bmm((n, 1, d), (n, d, m)) => shape of (n, 1, m)
return pred
#负采样近似加快程序运行时间
def get_negatives(all_contexts, sampling_weights, K):
'''
@params:
all_contexts: [[w_o1, w_o2, ...], [...], ... ]
sampling_weights: 每个单词的噪声词采样概率
K: 随机采样个数
@return:
all_negatives: [[w_n1, w_n2, ...], [...], ...]
'''
all_negatives, neg_candidates, i = [], [], 0
population = list(range(len(sampling_weights)))
for contexts in all_contexts:
negatives = []
while len(negatives) < len(contexts) * K:
if i == len(neg_candidates):
# 根据每个词的权重(sampling_weights)随机生成k个词的索引作为噪声词。
# 为了高效计算,可以将k设得稍大一点
i, neg_candidates = 0, random.choices(
population, sampling_weights, k=int(1e5))
neg, i = neg_candidates[i], i + 1
# 噪声词不能是背景词
if neg not in set(contexts):
negatives.append(neg)
all_negatives.append(negatives)
return all_negatives
sampling_weights = [counter[w]**0.75 for w in idx_to_token]
all_negatives = get_negatives(all_contexts, sampling_weights, 5)
class MyDataset(torch.utils.data.Dataset):
def __init__(self, centers, contexts, negatives):
assert len(centers) == len(contexts) == len(negatives)
self.centers = centers
self.contexts = contexts
self.negatives = negatives
def __getitem__(self, index):
return (self.centers[index], self.contexts[index], self.negatives[index])
def __len__(self):
return len(self.centers)
def batchify(data):
'''
用作DataLoader的参数collate_fn
@params:
data: 长为batch_size的列表,列表中的每个元素都是__getitem__得到的结果
@outputs:
batch: 批量化后得到 (centers, contexts_negatives, masks, labels) 元组
centers: 中心词下标,形状为 (n, 1) 的整数张量
contexts_negatives: 背景词和噪声词的下标,形状为 (n, m) 的整数张量
masks: 与补齐相对应的掩码,形状为 (n, m) 的0/1整数张量
labels: 指示中心词的标签,形状为 (n, m) 的0/1整数张量
'''
max_len = max(len(c) + len(n) for _, c, n in data)
centers, contexts_negatives, masks, labels = [], [], [], []
for center, context, negative in data:
cur_len = len(context) + len(negative)
centers += [center]
contexts_negatives += [context + negative + [0] * (max_len - cur_len)]
masks += [[1] * cur_len + [0] * (max_len - cur_len)] # 使用掩码变量mask来避免填充项对损失函数计算的影响
labels += [[1] * len(context) + [0] * (max_len - len(context))]
batch = (torch.tensor(centers).view(-1, 1), torch.tensor(contexts_negatives),
torch.tensor(masks), torch.tensor(labels))
return batch
batch_size = 256
num_workers = 0 if sys.platform.startswith('win32') else -1
dataset = MyDataset(all_centers, all_contexts, all_negatives)
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True,
collate_fn=batchify,
num_workers=num_workers)
for batch in data_iter:
for name, data in zip(['centers', 'contexts_negatives', 'masks',
'labels'], batch):
print(name, 'shape:', data.shape)
break
#采用交叉熵损失函数
class SigmoidBinaryCrossEntropyLoss(nn.Module):
def __init__(self):
super(SigmoidBinaryCrossEntropyLoss, self).__init__()
def forward(self, inputs, targets, mask=None):
'''
@params:
inputs: 经过sigmoid层后为预测D=1的概率
targets: 0/1向量,1代表背景词,0代表噪音词
@return:
res: 平均到每个label的loss
'''
inputs, targets, mask = inputs.float(), targets.float(), mask.float()
res = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none", weight=mask)
res = res.sum(dim=1) / mask.float().sum(dim=1)
return res
loss = SigmoidBinaryCrossEntropyLoss()
def sigmd(x):
return - math.log(1 / (1 + math.exp(-x)))
print('%.4f' % ((sigmd(1.5) + sigmd(-0.3) + sigmd(1) + sigmd(-2)) / 4)) # 注意1-sigmoid(x) = sigmoid(-x)
print('%.4f' % ((sigmd(1.1) + sigmd(-0.6) + sigmd(-2.2)) / 3))
embed_size = 200 #200维的词向量
net = nn.Sequential(nn.Embedding(num_embeddings=len(idx_to_token), embedding_dim=embed_size),
nn.Embedding(num_embeddings=len(idx_to_token), embedding_dim=embed_size))
def train(net, lr, num_epochs):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("train on", device)
net = net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
for epoch in range(num_epochs):
start, l_sum, n = time.time(), 0.0, 0
for batch in data_iter:
center, context_negative, mask, label = [d.to(device) for d in batch]
pred = skip_gram(center, context_negative, net[0], net[1])
l = loss(pred.view(label.shape), label, mask).mean() # 一个batch的平均。loss
optimizer.zero_grad()
l.backward()
optimizer.step()
l_sum += l.cpu().item()
n += 1
print('epoch %d, loss %.2f, time %.2fs'
% (epoch + 1, l_sum / n, time.time() - start))
train(net, 0.01, 5)
#不知道为什么没办法调用GPU,GPU跑起来略慢,一个小时才跑好
#测试模型
def get_similar_tokens(query_token, k, embed):
'''
@params:
query_token: 给定的词语
k: 近义词的个数
embed: 预训练词向量
'''
W = embed.weight.data
x = W[token_to_idx[query_token]]
# 添加的1e-9是为了数值稳定性
cos = torch.matmul(W, x) / (torch.sum(W * W, dim=1) * torch.sum(x * x) + 1e-9).sqrt()
_, topk = torch.topk(cos, k=k+1)
topk = topk.cpu().numpy()
for i in topk[1:]: # 除去输入词
print('cosine sim=%.3f: %s' % (cos[i], (idx_to_token[i])))
get_similar_tokens('fine', 3, net[0])
#可能是因为数据集比较小,因此结果并不准确