POJ2482 Stars in Your Window 线段树

题目链接

http://poj.org/problem?id=2482

分析

题面很感人,撩妹子的小trick;

依旧是扫描线法,在此之前需要一步转化,

考虑对于每颗星星,能将其覆盖的矩形右上角的轨迹所组成的矩形,

显然答案变为求一块区域,使得矩形在其上覆盖产生的权值和最大,

建一棵线段树支持区间加和区间查询最大值,从左往右扫描即可,

注意边缘的星星不算,注意对线段的排序方式,和面积并周长并有区别。

AC代码

#include 
#include 

using namespace std;

inline int read() {
	int num = 0;
	char c = getchar();
	while (c < '0' || c > '9') c = getchar();
	while (c >= '0' && c <= '9')
		num = num * 10 + c - '0', c = getchar();
	return num;
}

const int maxn = 1e4 + 5;

struct Line {
	long long x, y1, y2, k;

	bool operator < (const Line& rhs) const {
		if (x == rhs.x) return k < rhs.k;
		return x < rhs.x;
	}
} line[2 * maxn];

struct SegmentTree {
	int l, r, maxv, add;
} t[8 * maxn];

inline void up(int p) {
	t[p].maxv = max(t[2 * p].maxv, t[2 * p + 1].maxv);
}

inline void mark(int p, int d) {
	t[p].maxv += d, t[p].add += d;
}

inline void down(int p) {
	if (t[p].add) {
		mark(2 * p, t[p].add), mark(2 * p + 1, t[p].add);
		t[p].add = 0;
	}
}

void build(int p, int l, int r) {
	t[p].l = l, t[p].r = r, t[p].maxv = t[p].add = 0;
	if (l == r) return;
	int mid = (l + r) >> 1;
	build(2 * p, l, mid);
	build(2 * p + 1, mid + 1, r);
}

void modify(int p, int l, int r, int d) {
	if (l <= t[p].l && t[p].r <= r) {
		mark(p, d);
		return;
	}
	down(p);
	int mid = (t[p].l + t[p].r) >> 1;
	if (l <= mid) modify(2 * p, l, r, d);
	if (r > mid) modify(2 * p + 1, l, r, d);
	up(p);
}

long long a[2 * maxn];

int main() {
	int n, w, h;
	while (scanf("%d%d%d", &n, &w, &h) == 3) {
		for (int i = 1; i <= n; ++i) {
			int x = read(), y = read(), c = read();
			long long xx = 1ll * x + w, yy = 1ll * y + h - 1;
			line[i] = (Line){x, y, yy, c};
			line[i + n] = (Line){xx, y, yy, -c};
			a[i] = y, a[i + n] = yy;
		}
		sort(line + 1, line + 2 * n + 1);
		sort(a + 1, a + 2 * n + 1);
		a[0] = unique(a + 1, a + 2 * n + 1) - a - 1;
		build(1, 1, a[0]);
		int ans = 0;
		for (int i = 1; i < 2 * n; ++i) {
			int y1 = lower_bound(a + 1, a + a[0] + 1, line[i].y1) - a;
			int y2 = lower_bound(a + 1, a + a[0] + 1, line[i].y2) - a;
			modify(1, y1, y2, line[i].k);
			ans = max(ans, t[1].maxv);
		}
		printf("%d\n", ans);
	}
	return 0;
}

你可能感兴趣的:(数据结构,《算法竞赛进阶指南》,题解)