linux性能优化cpu使用率高什么原因

怎么查看 CPU 使用率top 显示了系统总体的 CPU 和内存使用情况,以及各个进程的资源使用情况。ps 则只显示了每个进程的资源使用情况。比如,top 的输出格式为:# 默认每3秒刷新一次

$ top
top - 11:58:59 up 9 days, 22:47,  1 user,  load average: 0.03, 0.02, 0.00
Tasks: 123 total,   1 running,  72 sleeping,   0 stopped,   0 zombie
%Cpu(s):  0.3 us,  0.3 sy,  0.0 ni, 99.3 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem :  8169348 total,  5606884 free,   334640 used,  2227824 buff/cache
KiB Swap:        0 total,        0 free,        0 used.  7497908 avail Mem

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
    1 root      20   0   78088   9288   6696 S   0.0  0.1   0:16.83 systemd
    2 root      20   0       0      0      0 S   0.0  0.0   0:00.05 kthreadd
    4 root       0 -20       0      0      0 I   0.0  0.0   0:00.00 kworker/0:0H
...

这个输出结果中,第三行 %Cpu 就是系统的 CPU 使用率,只是把CPU时间变换成了CPU使用率,我就不再重复讲了。不过需要注意,top 默认显示的是所有 CPU 的平均值,这个时候你只需要按下数字 1 ,就可以切换到每个 CPU 的使用率了。继续往下看,空白行之后是进程的实时信息,每个进程都有一个 %CPU 列,表示进程的 CPU 使用率。它是用户态和内核态 CPU 使用率的总和,包括进程用户空间使用的 CPU、通过系统调用执行的内核空间 CPU 、以及在就绪队列等待运行的 CPU。在虚拟化环境中,它还包括了运行虚拟机占用的 CPU。所以,到这里我们可以发现, top 并没有细分进程的用户态CPU和内核态 CPU。那要怎么查看每个进程的cpu使用率?用 pidstat ,它正是一个专门分析每个进程 CPU 使用情况的工具。比如,下面的pidstat命令,就间隔1秒展示了进程的5组CPU使用率,包括:
用户态CPU使用率 (%usr);
内核态CPU使用率(%system);
运行虚拟机CPU使用率(%guest);
等待 CPU使用率(%wait);
以及总的CPU使用率(%CPU)。
最后的 Average 部分,还计算了 5 组数据的平均值。# 每隔1秒输出一组数据,共输出5组

$ pidstat 1 5
15:56:02      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
15:56:03        0     15006    0.00    0.99    0.00    0.00    0.99     1  dockerd

...

Average:      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
Average:        0     15006    0.00    0.99    0.00    0.00    0.99     -  dockerd

CPU 使用率过高怎么办

使用 perf 分析 CPU 性能问题,我来说两种最常见、也是我最喜欢的用法。第一种常见用法是 perf top,类似于 top,它能够实时显示占用 CPU 时钟最多的函数或者指令,因此可以用来查找热点函数,使用界面如下所示:

$ perf top
Samples: 833  of event 'cpu-clock', Event count (approx.): 97742399
Overhead  Shared Object       Symbol
   7.28%  perf                [.] 0x00000000001f78a4
   4.72%  [kernel]            [k] vsnprintf
   4.32%  [kernel]            [k] module_get_kallsym
   3.65%  [kernel]            [k] _raw_spin_unlock_irqrestore
...

输出结果中,第一行包含三个数据,分别是采样数(Samples)、事件类型(event)和事件总数量(Event count)。比如这个例子中,perf 总共采集了 833 个 CPU 时钟事件,而总事件数则为 97742399。另外,采样数需要我们特别注意。如果采样数过少(比如只有十几个),那下面的排序和百分比就没什么实际参考价值了。再往下看是一个表格式样的数据,每一行包含四列,分别是:
第一列 Overhead ,是该符号的性能事件在所有采样中的比例,用百分比来表示。
第二列 Shared ,是该函数或指令所在的动态共享对象(Dynamic Shared Object),如内核、进程名、动态链接库名、内核模块名等。
第三列 Object ,是动态共享对象的类型。比如 [.] 表示用户空间的可执行程序、或者动态链接库,而 [k] 则表示内核空间。
最后一列 Symbol 是符号名,也就是函数名。当函数名未知时,用十六进制的地址来表示。

还是以上面的输出为例,我们可以看到,占用 CPU 时钟最多的是 perf 工具自身,不过它的比例也只有 7.28%,说明系统并没有 CPU 性能问题。 perf top的使用你应该很清楚了吧。

接着再来看第二种常见用法,也就是 perf record 和 perf report。 perf top 虽然实时展示了系统的性能信息,但它的缺点是并不保存数据,也就无法用于离线或者后续的分析。而 perf record 则提供了保存数据的功能,保存后的数据,需要你用 perf report 解析展示。

$ perf record # 按Ctrl+C终止采样
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.452 MB perf.data (6093 samples) ]

$ perf report # 展示类似于perf top的报告
在实际使用中,我们还经常为 perf top 和 perf record 加上 -g 参数,开启调用关系的采样,方便我们根据调用链来分析性能问题。

在实际使用中,我们还经常为 perf top 和 perf record 加上 -g 参数,开启调用关系的采样,方便我们根据调用链来分析性能问题。

你可能感兴趣的:(linux性能优化)