epoll的行为与poll(2)相似,监视多个有IO事件的文件描述符。epoll除了提供select/poll那种IO事件的水平触发(Level Triggered)外,还提供了边缘触发(Edge Triggered),这就使得用户空间程序有可能缓存IO状态,减少epoll_wait/epoll_pwait的调用,提高应用程序效率。
epoll_create(2)
创建一个新的epoll实例,并返回一个引用该实例的文件描述符epoll_ctl(2)
创建epoll实例后,注册对感兴趣的文件描述符。当前注册在epoll实例上的文件描述符集被称为epoll集合。epoll_wait(2)
等待I/O事件,如果当前没有事件可用,则阻塞调用线程。
水平触发
和边沿触发
epoll事件分布接口既可以表现为边缘触发(ET),也可以表现为水平触发(LT)。这两种机制的区别
可以这样描述。假设有这种情况发生:
如果使用边缘触发标志将rfd文件描述符注册到epoll接口,那么第五步的epoll_wait(2)的调用可能会挂起,尽管文件输入缓冲区仍然有1kb数据可读;同时,远程对等端可能正在期望基于它已发送的数据的应答。这样做的原因是,只有在被监视文件描述符上发生更改时,边缘触发模式才交付事件。因此,在步骤5中,调用者可能会以等待那些仍在输入缓冲区中的数据的状态下结束。
在上面的例子中,将生成rfd上的一个事件,因为在2中完成了写入,而在3中使用了该事件。由于在4中完成的读操作不会消耗整个缓冲区数据,所以在步骤5中完成的对epoll_wait(2)的调用可能会无限期阻塞。
使用EPOLLET标志的应用程序应该使用非阻塞文件描述符,以避免在处理多个文件描述符时出现有阻塞的读写饥饿任务。建议使用epoll作为边沿触发(EPOLLET)接口的方式如下:i、 具有非阻塞文件描述符
ii、只有在read(2)或write(2)返回EAGAIN后才等待事件。
相反,当EPOLLET作为水平触发接口使用时(默认情况下,没有指定EPOLLET), epoll只是一个更快的poll(2),并且可以在使用后者的任何地方使用,因为它具有相同的语义。
select能打开的文件描述符有一定的限制,FD_SETSIZE设置,默认值是2048,有两种解决方法,1、修改它的值,然后重新编译内核。2、使用多进程加入要并发20w个客户,那么就要开100进程;epoll则没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子,在1GB内存的机器上大约是2万左右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。
select/poll采用轮询的方式扫描文件描述符,文件描述符数量越多,性能越差;内核 / 用户空间内存拷贝问题,select/poll需要复制大量的句柄数据结构,产生巨大的开销;select/poll返回的是含有整个句柄的数组,应用程序需要遍历整个数组才能发现哪些句柄发生了事件,导致效率呈现线性下降。但是epoll不存在这个问题,它只会对"活跃"的socket进行操作---这是因为在内核实现中epoll是根据每个fd上面的callback函数实现的。
select/poll的触发方式是水平触发,应用程序如果没有完成对一个已经就绪的文件描述符进行IO操作,那么之后每次select/poll调用还是会将这些文件描述符通知进程。
select/poll和epoll都需要内核把FD消息通知给用户空间,如何避免不必要的内存拷贝很重要,在这点上,select/poll需要复制整个FD数组,产生巨大的开销;而epoll是通过内核于用户空间mmap同一块内存实现的。
int epoll_create(int size);
int epoll_create1(int flags);
创建一个epoll的句柄。自从linux2.6.8之后,size参数是被忽略的,更推荐使用epoll_crete1(0)来替代,flags可以设置EPOLL_CLOEXEC标志
#include
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
该系统调用对文件描述符epfd引用的epoll(7)实例执行控制操作。它请求对目标文件描述符fd执行操作op。
epfd
: epoll_create创建的文件描述符.
op
:参数的有效参数为:
EPOLL_CTL_ADD
在文件描述符epfd引用的epoll实例上注册目标文件描述符fd。
EPOLL_CTL_MOD
修改已注册描述符fd关联的事件。
EPOLL_CTL_DEL
从epfd引用的epoll实例中删除(取消注册)目标文件描述符fd。该事件将被忽略,并且可以是NULL
fd
:待监听的fd
epoll_event
: 描述链接到文件描述符fd的对象,它的定义如下
typedef union epoll_data {
void *ptr;
int fd;
uint32_t u32;
uint64_t u64;
} epoll_data_t;
struct epoll_event {
uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
events成员是由以下可用事件类型的零个或多个组合在一起组成的位掩码:
EPOLLIN :关联的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:关联的文件描述符可以写;
EPOLLPRI:关联的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:关联的文件描述符发生错误;
EPOLLHUP:关联的文件描述符被挂断;
EPOLLRDHUP:流套接字对等关闭连接,或半关闭写。(当使用边缘触发监视时,此标记对于编写简单代码检测对等端是否关闭特别有用。2.6.17引入)
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个fd的话,需要再次把这个fd加入到EPOLL队列里
它们在内核头文件里的定义如下:
33
34 enum EPOLL_EVENTS
35 {
36 EPOLLIN = 0x001,
37 #define EPOLLIN EPOLLIN
38 EPOLLPRI = 0x002,
39 #define EPOLLPRI EPOLLPRI
40 EPOLLOUT = 0x004,
41 #define EPOLLOUT EPOLLOUT
42 EPOLLRDNORM = 0x040,
43 #define EPOLLRDNORM EPOLLRDNORM
44 EPOLLRDBAND = 0x080,
45 #define EPOLLRDBAND EPOLLRDBAND
46 EPOLLWRNORM = 0x100,
47 #define EPOLLWRNORM EPOLLWRNORM
48 EPOLLWRBAND = 0x200,
49 #define EPOLLWRBAND EPOLLWRBAND
50 EPOLLMSG = 0x400,
51 #define EPOLLMSG EPOLLMSG
52 EPOLLERR = 0x008,
53 #define EPOLLERR EPOLLERR
54 EPOLLHUP = 0x010,
55 #define EPOLLHUP EPOLLHUP
56 EPOLLRDHUP = 0x2000,
57 #define EPOLLRDHUP EPOLLRDHUP
58 EPOLLEXCLUSIVE = 1u << 28,
59 #define EPOLLEXCLUSIVE EPOLLEXCLUSIVE
60 EPOLLWAKEUP = 1u << 29,
61 #define EPOLLWAKEUP EPOLLWAKEUP
62 EPOLLONESHOT = 1u << 30,
63 #define EPOLLONESHOT EPOLLONESHOT
64 EPOLLET = 1u << 31
65 #define EPOLLET EPOLLET
66 };
67
68
69 /* Valid opcodes ( "op" parameter ) to issue to epoll_ctl(). */
70 #define EPOLL_CTL_ADD 1 /* Add a file descriptor to the interface. */
71 #define EPOLL_CTL_DEL 2 /* Remove a file descriptor from the interface. */
72 #define EPOLL_CTL_MOD 3 /* Change file descriptor epoll_event structure. */
#include
int epoll_wait(int epfd, struct epoll_event *events,
int maxevents, int timeout);
int epoll_pwait(int epfd, struct epoll_event *events,
int maxevents, int timeout,
const sigset_t *sigmask);
等待在epoll监控的事件中已经发生的事件。epfd
: epoll_create() 的返回值.events
: 分配好的epoll_event结构体数组,epoll将会把发生的事件赋值到events数组中(events不可以是空指针,内核只负责把数据复制到这个events数组中,不会去帮助我们在用户态中分配内存)maxevents
: maxevents告知内核这个events有多大,这个 maxevents的值大于0(否则Error :Invalid argument)timeout
: 超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。如果函数调用成功,返回对应I/O上已准备好的文件描述符数目,如返回0表示已超时,它会阻塞直到
此程序简单测试一下三个API,注册标准输出的描述符到epoll,监视标准输出的读事件,触发后回显一遍,quit退出程序.
#include
#include
#include
#include
#include
#include
#include
#include
#include
typedef std::vector PollFdList;
int main(int argc ,char **argv)
{
int fd;
char buf[1024];
int i,res,real_read, maxfd;
if((fd=open("/dev/stdin",O_RDONLY|O_NONBLOCK)) < 0)
{
fprintf(stderr,"open data1 error:%s",strerror(errno));
return 1;
}
PollFdList m_pollfds;
int epfd = epoll_create1(EPOLL_CLOEXEC);
struct epoll_event ev;
ev.events = EPOLLIN | EPOLLPRI;
ev.data.fd = fd;
epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev);
m_pollfds.resize(1024);
while(1)
{
int ret = epoll_wait(epfd, m_pollfds.data(), m_pollfds.size(), 5000);
if (ret < 0)
{
printf("ePoll error : %s\n",strerror(errno));
return 1;
}
if(ret == 0){
printf("ePoll timeout\n");
continue;
}
for (i = 0; i< 1; i++)
{
if (m_pollfds[i].events & EPOLLIN)
{
memset(buf, 0, 1024);
real_read = read(m_pollfds[i].data.fd, buf, 1024);
if (real_read < 0)
{
if (errno != EAGAIN)
{
printf("read eror : %s\n",strerror(errno));
continue;
}
}
else if (!real_read)
{
close(m_pollfds[i].data.fd);
m_pollfds[i].events = 0;
}
else
{
if (i == 0)
{
buf[real_read] = '\0';
printf("%s", buf);
if ((buf[0] == 'q') || (buf[0] == 'Q'))
{
printf("quit\n");
return 1;
}
}
else
{
buf[real_read] = '\0';
printf("%s", buf);
}
}
}
}
}
exit(0);
}
./test
hello
hello
hello epoll
hello epoll
ePoll timeout
quit
quit
quit