图论系列(三)——图的深度优先遍历的应用1

1. 联通分量

  • 统计一个图中联通分量个数
  • 判断两点是否联通
  • 求每个联通分量中包含点编号
    图论系列(三)——图的深度优先遍历的应用1_第1张图片
import java.util.ArrayList;

//Connected Component —— 联通分量
public class CC {

    private Graph G;
    private int[] visited;          //将 boolean型改为 int型
    private int cccount = 0;

    CC(Graph G) {
        this.G = G;
        visited = new int[G.V()];
        for (int i = 0; i < visited.length; i++) {
            visited[i] = -1;
        }

        //解决非连通图的遍历问题
        for (int v = 0; v < G.V(); v++) {
            if (visited[v] == -1) {
                dfs(v, cccount);
                cccount++;
            }
        }
        //dfs(0);
    }

    private void dfs(int v, int ccid) {
        visited[v] = ccid;

        for (int w : G.adj(v)) {
            if (visited[w] == -1)
                dfs(w, ccid);
        }
    }

    public int count() {
//        for (int i = 0; i < visited.length; i++) {
//            System.out.print(visited[i] + " ");
//        }
//        System.out.println();
        return cccount;
    }

    //两个顶点是否联通
    public boolean isConnected(int v, int w) {
        G.validateVertex(v);
        G.validateVertex(w);

        return visited[v] == visited[w];
    }

    //每个联通分量里面包含节点编号
    public ArrayList<Integer>[] components() {
        ArrayList<Integer>[] res = new ArrayList[cccount];  //有cccount个联通分量
        for (int i = 0; i < res.length; i++) {              //编号[0 ~ cccount-1]
            res[i] = new ArrayList<>();
        }

        for (int v = 0; v < G.V(); v++) {
            res[visited[v]].add(v);
        }

        return res;
    }


    public static void main(String[] args) {

        Graph g = new Graph("g_4.txt");
        CC cc = new CC(g);
        System.out.println(cc.count());

        ArrayList<Integer>[] ret = cc.components();
        for (int ccid = 0; ccid < ret.length; ccid++) {
            System.out.print(ccid + ": ");
            for (Integer v : ret[ccid]) {
                System.out.print(v + " ");
            }
            System.out.println();
        }
    }
}

2. 路径问题

单源最短路
图论系列(三)——图的深度优先遍历的应用1_第2张图片

import java.util.ArrayList;
import java.util.Collections;

public class SingleSourcePath {

    private Graph G;
    private int s;          //source:从哪个源头开始
    private boolean[] visited;
    private int[] pre;      //保存到达某个点的上个节点的编号

    SingleSourcePath(Graph G, int s) {
        this.G = G;
        this.s = s;
        visited = new boolean[G.V()];
        pre = new int[G.V()];

        for (int i = 0; i < pre.length; i++) {
            pre[i] = -1;
        }
        //解决非连通图的遍历问题
//        for (int v = 0; v < G.V(); v++) {
//            if(!visited[v])
//                dfs(v);
//        }
        dfs(s, s);
    }

    private void dfs(int v, int parent) {
        visited[v] = true;
        pre[v] = parent;

        for (int w : G.adj(v)) {
            if (!visited[w])
                dfs(w, v);
        }
    }

    //判断s到v是否有路径(联通)
    public boolean isConnectedTo(int v) {
        this.G.validateVertex(v);
        return visited[v];      // return pre[v] != -1;
    }

    //保存源到某个节点路径
    public Iterable<Integer> path(int v) {
        ArrayList<Integer> res = new ArrayList<>();
        if (!isConnectedTo(v)) return res;

        int cur = v;
        while (cur != this.s) {
            res.add(cur);
            cur = pre[cur];
        }
        res.add(this.s);

        Collections.reverse(res);
        return res;
    }

    public static void main(String[] args) {

        Graph g = new Graph("g_3.txt");
        SingleSourcePath singleSourcePath = new SingleSourcePath(g, 0);
        System.out.println("0 -> 6" + singleSourcePath.path(6));
    }
}

所有点对路径问题(All Pairs Vertices Path Problem):对图中每个节点都实现一遍“单源最短路径”

  • 注:本系列参考玩转算法系列–图论精讲

你可能感兴趣的:(#,【01】方法总结)