最裸的汉诺塔:
第一步:把n-1个盘子移到B柱
第二步:把第n个柱子移到C柱
第三步:把n-1个盘子移到C盘
第一步和第三步是一样的,如果只需要求最少的步数,可以不管中间步骤,用递推直接写出即可
核心代码
a[1]=1;
for(int i=2;i<=n;i++)
a[i]=2*a[i-1]+1;
最裸的弄懂当然是远远不够的,现在我们来看一些变形
hdu2175
输入n,m,问初始有n个盘子,问第m次移动的盘子号
咋看很麻烦,其实也是很简单的啦!
比如有4个盘子,我要看第4步的盘子。如果我3个盘子都移到目的柱,那一共需要7步,如果把2个盘子都移到目的柱那一共需要3步,所以第4步移动的盘子一定在前3个盘子中。
而我们可以利用这种思想不断递推/递归也行,直到正好等于把某些盘子移动到目的柱。
#include
#include
#include
using namespace std;
typedef long long ll;
ll n,m,a[64],b[64];
void inial()
{
a[1]=1;b[0]=1;b[1]=2;
for(int i=2;i<64;i++)
{
a[i]=a[i-1]*2+1;
if(i<63)
b[i]=a[i]+1;
}
}
int sovle()
{
if(m==a[63])
return 1;
while(m>0)
{
int t=0;
while(t<63)
{
if(m>b[t])
t++;
else
break;
}
if(m==b[t])
return t+1;
m-=b[t-1];
}
}
int main()
{
inial();
while(cin>>n>>m&&n&&m)
{
cout<
hdu2511
下面的题目比上一个更加进了一步
输入n,m问n个盘子,第m步移动的是哪个盘子,而且输出从哪个盘子移动到哪个盘子(比上一题进了一步)
大家想想。如果m步正好是k个盘子移动到目的柱,那么这时候肯定把1号盘由所在柱,移动k个盘所在的目的柱。1的所在柱就是我们递归函数中的所在柱,那么目的柱呢?大家想想我最开始讲的最裸的三部,要移动n个盘就把n-1个盘移动到B,那对于n-1个盘来说,中间B盘是目的柱,C是中间柱,那么对于n-2个盘来说目的柱是C柱,中间柱石B柱,那么判断k个盘的目的柱是哪个直接判断他与n的差的奇偶性即可。
#include
#include
#include
#include
using namespace std;
typedef long long ll;
ll a[64],m;
int t,n;
void inal()
{
a[1]=1;
for(int i=2;i<=63;i++)
a[i]=2*a[i-1]+1;
}
void sovle(int s,int t,int z,int n)
{//cout<<"----------- "<0)
k++;
k--;
m-=a[k];
int d=(n-k)&1;
if(d==1)//1到k在第z上
{
if(m==0)
{
cout<<1<<" "<
hdu2184
接下来咱们再进一步,第m步的时候输出三个柱子上的盘子的编号
如果直接看这题是不是会被吓到,但是有前面题目的积累,这题也只是进了一步而已。eg:4个盘子,第5步,3个盘子移到目的柱,则需要7步,2个盘子移到目的柱需要3步,
则这里可以判定第4个盘子肯定在原来的柱子上不动,那第3个盘子会移到中间柱上。写个递归函数是不是很方便呢?如何保存每个柱子上的盘子号呢?由于递归的性质,会大的盘子先确定,柱子上编号较小的盘子可能是在下一层递归中确定。输出是先输出大的再输出小的,先进先出,不就是队列么。
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
ll a[64],m;
int t,n,len[4];
queue qu[4];
void inal()
{
a[1]=1;
for(int i=2;i<=63;i++)
a[i]=2*a[i-1]+1;
}
void sovle(int s,int t,int z,int n)
{
int k=1;
while(k<64&&m-a[k]>0)
k++;
k--;
for(int i=n;i>k+1;i--)
{
len[s]++;
qu[s].push(i);
}
m-=a[k];
int d=(n-k)&1;
if(d==0)
swap(z,t);
if(m==0)
{
for(int i=k;i>=1;i--)
{
len[z]++;
qu[z].push(i);
}
len[s]++;
qu[s].push(k+1);
return;
}
len[t]++;
qu[t].push(k+1);
if(m==1)
{
for(int i=k;i>=1;i--)
{
len[z]++;
qu[z].push(i);
}
return;
}
m--;
sovle(z,t,s,k);
}
int main()
{
inal();
scanf("%d",&t);
while(t--)
{
memset(len,0,sizeof(len));
scanf("%d%I64d",&n,&m);
sovle(1,3,2,n);
for(int i=1;i<=3;i++)
{
printf("%d ",len[i]);
printf("%d",qu[i].front());
qu[i].pop();
while(!qu[i].empty())
{
printf(" %d",qu[i].front());
qu[i].pop();
}
printf("\n");
}
}
return 0;
}
问题把n个盘子移到目的柱,问第k个盘子在这过程中一共移动了多少次。
看上去很复杂的样子,但仔细想一想,第n个盘子只需要1次,第n-1个盘子只需要移动2次,你可以这么递归下去,当然有感觉的也可以直接找到规律,不说了,上代码
#include#include using namespace std; typedef long long ll; int t,n,k; int main() { scanf("%d",&t); while(t--) { scanf("%d%d",&n,&k); ll ans=pow(2,n-k); printf("%I64d\n",ans); } return 0; }#include #include
hdu1996
问n个盘子,移动到目的柱的过程中(不考虑最优的情况)会产生序列的总数,low题,每个哦案子不就可以在三个柱子上么,3的阶层就行了
#include
#include
#include
#include
using namespace std;
typedef long long ll;
ll a[31];
void inial()
{
a[0]=1;
for(int i=1;i<=30;i++)
a[i]=3*a[i-1];
}
int main()
{
inial();
int t,k;
scanf("%d",&t);
while(t--)
{
scanf("%d",&k);
printf("%I64d\n",a[k]);
}
return 0;
}
上面两题算是休息,现在来看看更加深入,更加有趣的汉诺塔,hdu1997,自己看题意啊
这题是不是一看到就把人吓到了,对于这种问题,肯定是递归的啦!现在的问题是递归什么,如果你要递归每一步,肯定会爆掉。我们要弄清楚我们可以确定什么,由于最裸的公式,我们可以确定,n在A或C,如果n确定了,那么我们需要考虑n-1。如果n在A,那还处于最裸的公式中的第一步,那么n-1只有在A或B,目的柱是B,起点是A,中间点是C。如果n到C,那一定经历过了第一步,那么n-1要么在C要么在B,起点是B,中间点是A,目的点是C
#include
#include
#include
using namespace std;
const int M=70;
int t,n,len[4],a[4][M],no[4],f=-1;
void input()
{
scanf("%d",&n);
for(int i=0;i<3;i++)
{
scanf("%d",&len[i]);
for(int j=0;j
hdu2064盘子不能直接从A到C,只能先由B在到C。
学会着递推公式,找不到的话,可以先模拟少数几个盘子
n-1个盘子先要移到C,n移到B,n-1个盘子移到A,n移到C,n-1个盘子移到C
#include
#include
using namespace std;
typedef long long ll;
ll f[37];
void Inial()
{
f[1]=2;
for(int i=2;i<36;i++)
f[i]=3*f[i-1]+2;
}
int main()
{
Inial();
int n;
while(scanf("%d",&n)!=EOF)
{
cout<
规则在hdu2064的基础上再变一下,最大的盘可以放在小的盘子的上面(最上面)
跟上题结合一下,n-1用上题的规则移到B,n移到B,再移到C,再把n-1个移到C
#include
#include
using namespace std;
typedef long long ll;
ll a[37],b[37];
void Inial()
{
a[1]=2;
b[1]=1;
for(int i=2;i<=20;i++)
{
a[i]=3*a[i-1]+2;
}
for(int i=2;i<=20;i++)
{
b[i]=b[i-1]+a[i-1]+1;
}
}
int main()
{
Inial();
int n,m;cin>>n;
for(int i=0;i>m;
cout<
规则又做了一次改变,这次有了四根柱子,这题的难点在于惯性思维(惯性思维害死人啊!!!),大家都用递推来做,其实是里面柔和了dp。大家自己感受下来自世界的深深的恶意。
#include
#include
#include
using namespace std;
double a[65],b[65];
void inial()
{
b[1]=1;
for(int i=2;i<65;i++)
b[i]=2*b[i-1]+1;
a[1]=1;
a[2]=3;
for(int i=3;i<=64;i++)
{
a[i]=b[i];
for(int j=1;j