数据倾斜介绍及解决方案

1、 什么是数据倾斜?

由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点

2、 Hadoop 框架的特性

A、 不怕数据大,怕数据倾斜
B、 Jobs 数比较多的作业运行效率相对比较低,如子查询比较多
C、 sum,count,max,min 等聚集函数, 通常不会有数据倾斜问题

3、 主要表现

任务进度长时间维持在 99%或者 100%的附近, 查看任务监控页面,发现只有少量 reduce
子任务未完成, 因为其处理的数据量和其他的 reduce 差异过大。
单一 reduce 处理的记录数和平均记录数相差太大,通常达到好几倍之多,最长时间远大
于平均时长。

4、 容易数据倾斜情况

A、 group by 不和聚集函数搭配使用的时候
B、 count(distinct), 在数据量大的情况下,容易数据倾斜,因为 count(distinct)是按 group
by 字段分组,按 distinct 字段排序
C、 小表关联超大表 join

5、 产生数据倾斜的原因

A: key 分布不均匀
B:业务数据本身的特性
C:建表考虑不周全
D:某些 HQL 语句本身就存在数据倾斜

6、 业务场景

A: 空值产生的数据倾斜

场景说明: 在日志中,常会有信息丢失的问题, 比如日志中的 user_id,如果取其中的
user_id 和用户表中的 user_id 相关联,就会碰到数据倾斜的问题。

解决方案 1: user_id 为空的不参与关联(分批关联)

select * from log a join user b on a.user_id is not null and a.user_id = b.user_id
union all
select * from log c where c.user_id is null;

解决方案 2: 赋予空值新的 key 值

select * from log a left outer join user b on
case when a.user_id is null then concat('hive',rand()) else a.user_id end = b.user_id

总结

方法 2 比方法 1 效率更好, 不但 IO 少了,而且作业数也少了,方案 1 中, log 表读了两次, jobs 肯定是 2,而方案 2 是 1。 这个优化适合无效 id(比如-99, ’’, null)产生的数据倾斜, 把空值的 key 变成一个字符串加上一个随机数,就能把造成数据倾斜的数据分到不同的 reduce 上解决数据倾斜的问题。


改变之处: 使本身为 null 的所有记录不会拥挤在同一个 reduceTask 了,会由于有替代的随机字符串值,而分散到了多个 reduceTask 中了, 由于 null 值关联不上,处理后并不影响最终结果。

B:不同数据类型关联产生数据倾斜

场景说明: 用户表中 user_id 字段为 int, log 表中 user_id 为既有 string 也有 int 的类型,当按照两个表的 user_id 进行 join 操作的时候,默认的 hash 操作会按照 int 类型的 id 进行分配, 这样就会导致所有的 string 类型的 id 就被分到同一个 reducer 当中

解决方案: 把数字类型 id 转换成 string 类型的 id

select * from user a left outer join log b on b.user_id = cast(a.user_id as string)

C:大小表关联查询产生数据倾斜(使用map join)

注意: 使用map join解决小表关联大表造成的数据倾斜问题。这个方法使用的频率很高。


map join 概念:将其中做连接的小表(全量数据)分发到所有 MapTask 端进行 Join,从而避免了 reduceTask,前提要求是内存足以装下该全量数据以大表 a 和小表 b 为例,所有的 maptask 节点都装载小表 b 的所有数据,然后大表 a 的
一个数据块数据比如说是 a1 去跟 b 全量数据做链接,就省去了 reduce 做汇总的过程。因此,在内存允许的条件下使用 map join 比直接使用 MapReduce 效率还高些,当然这只限于做 join 查询的时候。

MapJoin 具体用法:

在 hive0.11 版本以后会自动开启 map join 优化,由两个参数控制:

//设置 MapJoin 优化自动开启

set hive.auto.convert.join=true;

//设置小表不超过多大时开启 mapjoin 优化

set hive.mapjoin.smalltable.filesize=25000000

select /* +mapjoin(a) */ a.id aid, name, age from a join b on a.id = b.id;
select /* +mapjoin(movies) */ a.title, b.rating from movies a join ratings b on a.movieid =b.movieid;
 

特殊情况

如果是大大表关联呢?那就大事化小,小事化了。 把大表切分成小表,然后分别 map join
那么如果小表不大不小,那该如何处理呢? ??
使用 map join 解决小表(记录数少)关联大表的数据倾斜问题,这个方法使用的频率非常
高,但如果小表很大,大到 map join 会出现 bug 或异常,这时就需要特别的处理
举一例: 日志表和用户表做链接

select * from log a left outer join users b on a.user_id = b.user_id;
users 表有 600w+的记录,把 users 分发到所有的 map 上也是个不小的开销,而且 map join
不支持这么大的小表。如果用普通的 join,又会碰到数据倾斜的问题。
 

改进方案:

select /*+mapjoin(x)*/* from log a
left outer join (
select /*+mapjoin(c)*/ d.*
from ( select distinct user_id from log ) c join users d on c.user_id = d.user_id
) x
on a.user_id = x.user_id;

你可能感兴趣的:(hive)