Spark组件之GraphX学习9--使用pregel函数求单源最短路径

更多代码请见:https://github.com/xubo245/SparkLearning


1解释

使用pregel函数求单源最短路径

GraphX中的单源点最短路径例子,使用的是类Pregel的方式。

核心部分是三个函数:

1.节点处理消息的函数  vprog: (VertexId, VD, A) => VD (节点id,节点属性,消息) => 节点属性

2.节点发送消息的函数 sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId,A)]   (边元组) => Iterator[(目标节点id,消息)]

3.消息合并函数 mergeMsg: (A, A) => A)    (消息,消息) => 消息

具体请参考【3】

主要代码:

   val sssp = initialGraph.pregel(Double.PositiveInfinity)(
      (id, dist, newDist) => math.min(dist, newDist), // Vertex Program
      triplet => { // Send Message
        if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {
          Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))
        } else {
          Iterator.empty
        }
      },
      (a, b) => math.min(a, b) // Merge Message
      )


源码:

  /**
   * Execute a Pregel-like iterative vertex-parallel abstraction.  The
   * user-defined vertex-program `vprog` is executed in parallel on
   * each vertex receiving any inbound messages and computing a new
   * value for the vertex.  The `sendMsg` function is then invoked on
   * all out-edges and is used to compute an optional message to the
   * destination vertex. The `mergeMsg` function is a commutative
   * associative function used to combine messages destined to the
   * same vertex.
   *
   * On the first iteration all vertices receive the `initialMsg` and
   * on subsequent iterations if a vertex does not receive a message
   * then the vertex-program is not invoked.
   *
   * This function iterates until there are no remaining messages, or
   * for `maxIterations` iterations.
   *
   * @tparam A the Pregel message type
   *
   * @param initialMsg the message each vertex will receive at the on
   * the first iteration
   *
   * @param maxIterations the maximum number of iterations to run for
   *
   * @param activeDirection the direction of edges incident to a vertex that received a message in
   * the previous round on which to run `sendMsg`. For example, if this is `EdgeDirection.Out`, only
   * out-edges of vertices that received a message in the previous round will run.
   *
   * @param vprog the user-defined vertex program which runs on each
   * vertex and receives the inbound message and computes a new vertex
   * value.  On the first iteration the vertex program is invoked on
   * all vertices and is passed the default message.  On subsequent
   * iterations the vertex program is only invoked on those vertices
   * that receive messages.
   *
   * @param sendMsg a user supplied function that is applied to out
   * edges of vertices that received messages in the current
   * iteration
   *
   * @param mergeMsg a user supplied function that takes two incoming
   * messages of type A and merges them into a single message of type
   * A.  ''This function must be commutative and associative and
   * ideally the size of A should not increase.''
   *
   * @return the resulting graph at the end of the computation
   *
   */
  def pregel[A: ClassTag](
      initialMsg: A,
      maxIterations: Int = Int.MaxValue,
      activeDirection: EdgeDirection = EdgeDirection.Either)(
      vprog: (VertexId, VD, A) => VD,
      sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
      mergeMsg: (A, A) => A)
    : Graph[VD, ED] = {
    Pregel(graph, initialMsg, maxIterations, activeDirection)(vprog, sendMsg, mergeMsg)
  }

object Pregel extends Logging {

  /**
   * Execute a Pregel-like iterative vertex-parallel abstraction.  The
   * user-defined vertex-program `vprog` is executed in parallel on
   * each vertex receiving any inbound messages and computing a new
   * value for the vertex.  The `sendMsg` function is then invoked on
   * all out-edges and is used to compute an optional message to the
   * destination vertex. The `mergeMsg` function is a commutative
   * associative function used to combine messages destined to the
   * same vertex.
   *
   * On the first iteration all vertices receive the `initialMsg` and
   * on subsequent iterations if a vertex does not receive a message
   * then the vertex-program is not invoked.
   *
   * This function iterates until there are no remaining messages, or
   * for `maxIterations` iterations.
   *
   * @tparam VD the vertex data type
   * @tparam ED the edge data type
   * @tparam A the Pregel message type
   *
   * @param graph the input graph.
   *
   * @param initialMsg the message each vertex will receive at the first
   * iteration
   *
   * @param maxIterations the maximum number of iterations to run for
   *
   * @param activeDirection the direction of edges incident to a vertex that received a message in
   * the previous round on which to run `sendMsg`. For example, if this is `EdgeDirection.Out`, only
   * out-edges of vertices that received a message in the previous round will run. The default is
   * `EdgeDirection.Either`, which will run `sendMsg` on edges where either side received a message
   * in the previous round. If this is `EdgeDirection.Both`, `sendMsg` will only run on edges where
   * *both* vertices received a message.
   *
   * @param vprog the user-defined vertex program which runs on each
   * vertex and receives the inbound message and computes a new vertex
   * value.  On the first iteration the vertex program is invoked on
   * all vertices and is passed the default message.  On subsequent
   * iterations the vertex program is only invoked on those vertices
   * that receive messages.
   *
   * @param sendMsg a user supplied function that is applied to out
   * edges of vertices that received messages in the current
   * iteration
   *
   * @param mergeMsg a user supplied function that takes two incoming
   * messages of type A and merges them into a single message of type
   * A.  ''This function must be commutative and associative and
   * ideally the size of A should not increase.''
   *
   * @return the resulting graph at the end of the computation
   *
   */
  def apply[VD: ClassTag, ED: ClassTag, A: ClassTag]
     (graph: Graph[VD, ED],
      initialMsg: A,
      maxIterations: Int = Int.MaxValue,
      activeDirection: EdgeDirection = EdgeDirection.Either)
     (vprog: (VertexId, VD, A) => VD,
      sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
      mergeMsg: (A, A) => A)
    : Graph[VD, ED] =
  {
    var g = graph.mapVertices((vid, vdata) => vprog(vid, vdata, initialMsg)).cache()
    // compute the messages
    var messages = g.mapReduceTriplets(sendMsg, mergeMsg)
    var activeMessages = messages.count()
    // Loop
    var prevG: Graph[VD, ED] = null
    var i = 0
    while (activeMessages > 0 && i < maxIterations) {
      // Receive the messages and update the vertices.
      prevG = g
      g = g.joinVertices(messages)(vprog).cache()

      val oldMessages = messages
      // Send new messages, skipping edges where neither side received a message. We must cache
      // messages so it can be materialized on the next line, allowing us to uncache the previous
      // iteration.
      messages = g.mapReduceTriplets(
        sendMsg, mergeMsg, Some((oldMessages, activeDirection))).cache()
      // The call to count() materializes `messages` and the vertices of `g`. This hides oldMessages
      // (depended on by the vertices of g) and the vertices of prevG (depended on by oldMessages
      // and the vertices of g).
      activeMessages = messages.count()

      logInfo("Pregel finished iteration " + i)

      // Unpersist the RDDs hidden by newly-materialized RDDs
      oldMessages.unpersist(blocking = false)
      prevG.unpersistVertices(blocking = false)
      prevG.edges.unpersist(blocking = false)
      // count the iteration
      i += 1
    }

    g
  } // end of apply





2.代码:

/**
 * @author xubo
 * ref http://spark.apache.org/docs/1.5.2/graphx-programming-guide.html
 * time 20160503
 */

package org.apache.spark.graphx.learning

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.graphx.Graph
import org.apache.spark.graphx.Graph.graphToGraphOps
import org.apache.spark.graphx.VertexId
import org.apache.spark.graphx.util.GraphGenerators

object Pregeloperator {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("CollectingNeighbors").setMaster("local[4]")
    // Assume the SparkContext has already been constructed
    val sc = new SparkContext(conf)
    // A graph with edge attributes containing distances
    val graph: Graph[Long, Double] =
      GraphGenerators.logNormalGraph(sc, numVertices = 5).mapEdges(e => e.attr.toDouble)
    val sourceId: VertexId = 2 // The ultimate source
    // Initialize the graph such that all vertices except the root have distance infinity.

    println("graph:");
    println("vertices:");
    graph.vertices.collect.foreach(println)
    println("edges:");
    graph.edges.collect.foreach(println)
    println();

    val initialGraph = graph.mapVertices((id, _) => if (id == sourceId) 0.0 else Double.PositiveInfinity)
    println("initialGraph:");
    println("vertices:");
    initialGraph.vertices.collect.foreach(println)
    println("edges:");
    initialGraph.edges.collect.foreach(println)
    val sssp = initialGraph.pregel(Double.PositiveInfinity)(
      (id, dist, newDist) => math.min(dist, newDist), // Vertex Program
      triplet => { // Send Message
        if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {
          Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))
        } else {
          Iterator.empty
        }
      },
      (a, b) => math.min(a, b) // Merge Message
      )
    println();
    println("sssp:");
    println("vertices:");
    println(sssp.vertices.collect.mkString("\n"))
    println("edges:");
    sssp.edges.collect.foreach(println)
  }
}



3.结果:


graph:
vertices:
(4,3)
(0,3)
(1,2)
(2,3)
(3,4)
edges:
Edge(0,0,1.0)
Edge(0,0,1.0)
Edge(0,4,1.0)
Edge(1,1,1.0)
Edge(1,3,1.0)
Edge(2,1,1.0)
Edge(2,1,1.0)
Edge(2,1,1.0)
Edge(3,1,1.0)
Edge(3,2,1.0)
Edge(3,2,1.0)
Edge(3,4,1.0)
Edge(4,0,1.0)
Edge(4,2,1.0)
Edge(4,4,1.0)

initialGraph:
vertices:
(4,Infinity)
(0,Infinity)
(1,Infinity)
(2,0.0)
(3,Infinity)
edges:
Edge(0,0,1.0)
Edge(0,0,1.0)
Edge(0,4,1.0)
Edge(1,1,1.0)
Edge(1,3,1.0)
Edge(2,1,1.0)
Edge(2,1,1.0)
Edge(2,1,1.0)
Edge(3,1,1.0)
Edge(3,2,1.0)
Edge(3,2,1.0)
Edge(3,4,1.0)
Edge(4,0,1.0)
Edge(4,2,1.0)
Edge(4,4,1.0)
2016-05-04 14:43:01 WARN  BlockManager:71 - Block rdd_23_1 already exists on this machine; not re-adding it

sssp:
vertices:
(4,3.0)
(0,4.0)
(1,1.0)
(2,0.0)
(3,2.0)
edges:
Edge(0,0,1.0)
Edge(0,0,1.0)
Edge(0,4,1.0)
Edge(1,1,1.0)
Edge(1,3,1.0)
Edge(2,1,1.0)
Edge(2,1,1.0)
Edge(2,1,1.0)
Edge(3,1,1.0)
Edge(3,2,1.0)
Edge(3,2,1.0)
Edge(3,4,1.0)
Edge(4,0,1.0)
Edge(4,2,1.0)
Edge(4,4,1.0)

分析:

由上诉结果画图可得:

Spark组件之GraphX学习9--使用pregel函数求单源最短路径_第1张图片

黑色部分为初始化图Graph的点和边,initGraph会将除了第二个节点外的所有节点的值初始化为无穷大,自己设为0,然后从0开始pregel处理。红色部分为实际求单源最短路径可能的路线,所以节点2到节点1为1,到3为2,到4为3,到0为4



参考

【1】 http://spark.apache.org/docs/1.5.2/graphx-programming-guide.html

【2】https://github.com/xubo245/SparkLearning

【3】http://blog.csdn.net/li385805776/article/details/20487219

你可能感兴趣的:(spark)